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Cardiovascular Topics

Effect of insulin resistance on left ventricular remodelling 
in essential hypertensives: a cross-sectional study
Bernard Kianu Phanzu, Aliocha Nkodila Natuhoyila, Eleuthère Kintoki Vita, Benjamin Longo-Mbenza, 
Jean-René M’Buyamba Kabangu

Abstract
Background: In clinical practice, left ventricular hypertrophy 
(LVH) is defined by physical findings and electrocardio-
graphic criteria, which are useful but imperfect tools, echocar-
diographic criteria and cardiac magnetic resonance imaging. 
In echocardiography, LVH is defined not by left ventricular 
wall thicknesses but by left ventricular mass. The latter is 
calculated according to Devereux’s formula, and is increased 
by insulin resistance/hyperinsulinaemia. It is however unclear 
whether insulin resistance, hyperinsulinaemia, or both, is 
actually causative and what their collective or individual 
influence is on the components of Devereux’s formula and 
parameters of left ventricular diastolic function. This study 
evaluated the associations of the homeostatic model assess-
ment for insulin resistance (HOMAIR) and fasting plasma 
insulin levels with components of Devereux’s formula and 
parameters of left ventricular diastolic function.
Methods: Relevant clinical data were collected from 220 hyper-
tensive patients recruited between January and December 
2019. The associations of components of Devereux’s formula 
and parameters of diastolic function with insulin resistance 
were tested using binary ordinal, conditional and classical 
logistic regression models.
Results: Thirty-two (14.5%) patients (43.9 ± 9.1 years), 99 
(45%) patients (52.4 ± 8.7 years) and 89 (40.5%) patients (53.1 
± 9.8 years) had normal left ventricular geometry, concentric 
left ventricular remodelling and concentric left ventricular 
hypertrophy, respectively. In multivariable adjusted analysis, 
46.8% of variation in interventricular septum diameter (R² = 
0.468; overall p = 0.001) and 30.9% of E-wave deceleration

time (R² = 0.309; overall p = 0.003) were explained by insulin 
level and HOMAIR, 30.1% of variation in left ventricular 
end-diastolic diameter (R² = 0.301; p = 0.013) by HOMAIR 
alone, and 46.3% of posterior wall thickness (R² = 0.463; p = 
0.002) and 29.4% of relative wall thickness (R² = 0.294; p = 
0.007) by insulin level alone. 
Conclusions: Insulin resistance and hyperinsulinaemia did not 
have the same influence on the components of Devereux’s 
formula. Insulin resistance appeared to act on left ventricular 
end-diastolic diameter, while hyperinsulinaemia affected the 
posterior wall thickness. Both abnormalities acted on the 
interventricular septum and contributed to diastolic dysfunc-
tion via the E-wave deceleration time. 
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Hypertensive patients with insulin resistance (IR) are at 
increased cardiovascular risk compared to hypertensive patients 
without IR.1 Likewise, the presence of target-organ damage, 
including left ventricular hypertrophy (LVH), is associated 
with a poor prognosis in hypertensive patients.2 International 
guidelines therefore recommend considering hypertensive 
patients with target-organ damage, including LVH, as being at 
high cardiovascular risk.3-5

Hypertension-induced LVH is a known corollary not only 
of barometric overload secondary to high blood pressure, 
but also of various metabolic abnormalities induced by IR6,7 

and hyperinsulinaemia.8,9 LVH represents a phenotype of the 
formidable capacity of the heart to adapt to various constraints 
in order to maintain a cardiac output sufficient to meet the 
metabolic needs of the whole organism. This left ventricular (LV) 
remodelling is defined as the set of changes in the size, shape and 
function of the left ventricle.10

LVH has a poor prognosis.2,10-12 It is defined not by the 
ventricular wall thickness, but by the left ventricular mass 
(LVM), calculated according to the formula of Devereux, also 
known as Penn’s formula,13 as:

LVM (g) = 0.8 × 1.04 [(LVED + IVS + PWT)3 – LVED3] + 
0.6 g, 
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where LVED indicates left ventricular end-diastolic diameter, 
IVS indicates interventricular septal thickness and PWT indicates 
posterior wall thickness. Therefore, any factor that increases 
LVM might affect at least one of the following components: 
LVED and/or IVS and/or PWT. 

Because IR and hyperinsulinaemia increase LVM, the purpose 
of this study was to assess the collective and isolated influence 
of IR/hyperinsulinaemia on each component of the Devereux 
formula and on diastolic functional parameters.

Methods
This was a cross-sectional study conducted in the Centre Médical 
de Kinshasa (CMK) between January and December 2019. The 
CMK is a reference clinic with a cardiology centre named Pôle de 
Cardiologie, where cardiovascular explorations such as Doppler 
echocardiography, coronary scanning and cardiopulmonary 
exercise testing are performed. It operates with highly qualified, 
regularly retrained personnel.

This research was conducted in strict compliance with the 
recommendations of the Helsinki Declaration III. Approval to 
conduct the study was obtained from the ethics committee of 
the University of Kinshasa Public Health School prior to its 
commencement. Each participant provided written, informed 
consent to participate in the study. All respondents were debriefed 
on the results of the study.

Two hundred and twenty asymptomatic hypertensive patients 
(133 men, 60.4%), aged 51.5 ± 9.7 years, were consecutively 
enrolled during out-patient consultations at the Pôle de 
Cardiologie of the CMK between January and December 2019. 
The inclusion criteria were age of 20 years and above and absence 
of clinical or laboratory evidence of secondary hypertension, 
renal or hepatic disease. Patients with heart disease unrelated to 
high blood pressure were excluded from participation. 

Demographic data (age, gender), lifestyle habits (heavy alcohol 
consumption, current smoking, sedentary behaviour), medical 
history including cardiovascular risk factors (age at diagnosis of 
high blood pressure, history of diabetes mellitus, dyslipidaemia, 
hyperuricaemia, menopause), previous cardiovascular events 
(stroke, ischaemic heart disease, heart failure, chronic kidney 
disease, cardiovascular surgery), and current medication use 
for chronic disease (antihypertensive treatment, antidiabetic 
treatment and other treatments including statins, antiplatelet 
agents, hypo-uricaemics, oral contraception and hormone 
replacement therapy) were collected during an in-person directed 
interview using an ad hoc questionnaire.

Anthropometric parameters measured by a trained observer 
consisted of measurements of body weight, height, and waist 
and hip circumference according to WHO recommendations. 
Body weight was measured in kilograms using a validated 
electronic balance on a stable and flat surface, with participants 
in light clothing and shoes. The reading was taken to the nearest 
100 g. Height was measured with a measuring rod, to the nearest 
centimetre, with participants standing barefoot and bareheaded. 
Body mass index (BMI) was obtained by dividing the weight (kg) 
by the height (m) squared.

Waist circumference was measured to the nearest 0.1 cm, 
using a measuring tape applied directly to the skin along the 
horizontal line passing through the umbilicus. Body surface area 
(BSA) was calculated using the DuBois formula,14 as follows: 

BSA = height 0.725 × weight 0.425 × 0.007184. 
Blood pressure was measured non-invasively by 24-hour 

ambulatory blood pressure monitoring using a Tonoport V 
(GE Healthcare, Freiburg, Germany) type recorder. During this 
recording, the participant was asked to maintain his usual way 
of life.

LV measurements were obtained according to the updated 
2015 American Society of Echocardiography and European 
Association of Cardiovascular Imaging guidelines for cardiac 
chamber quantification,15 using a Vivid T8 (GE) type ultrasound 
system equipped with 3.5-MHz transducers. Two-dimensionally 
guided M-mode echocardiography was performed in the 
parasternal long-axis view. IVS, LVED and PWT were measured 
at end-diastole at a level just below the mitral valve leaflets. 
Simultaneous ECG was used to correlate measurements with the 
cardiac cycle. Diastolic wall thickness was measured at the onset 
of the QRS wave. LVM was calculated according to the American 
Society of Echocardiography simplified cubed equation linear 
method using the equation of Devereux (see above).13 

LVM was indexed by BSA and by height2.7. The relative wall 
thickness (RWT) of the left ventricle was calculated as (2 × 
PWT)/LVED. 

In accordance with international recommendations,16 
the parameters of LV diastolic function were measured by 
recording transmitral flow velocity using conventional Doppler 
echocardiography. With pulsed-wave (PW) Doppler, transmitral 
flow velocity was recorded from the apical transducer position 
with the sample volume situated between the mitral leaflet tips. 

E (peak E-wave velocity), A (peak A-wave velocity) and 
deceleration time of early filling (DT) were recorded in the 
apical four-chamber view with colour-flow imaging for optimal 
alignment of PW Doppler with blood flow. PW Doppler sample 
volume (1–3 mm axial size) was placed between the mitral leaflet 
tips using low wall filter setting (100–200 MHz) and low signal 
gain, so that the optimal spectral waveforms would not display 
spikes. E, A and DT were measured as the averages of five 
consecutive cardiac cycles. The E/A ratio was calculated. 

Tissue Doppler echocardiography, which measures 
the velocity of the regional cardiac wall, was performed by 
activating the tissue Doppler echocardiographic function as 
for two-dimensional and M-mode echocardiography. Mitral 
annular velocities were recorded from the apical window. Sample 
volumes were located at the lateral site of the mitral annulus. 

Peak early diastolic mitral annular velocity (E′, cm/s) was 
measured over five cardiac cycles and the mean was calculated. 
The ratio E/e′ was used as a parameter of left atrial pressure, 
which is elevated with progression of LV diastolic dysfunction. 
These parameters, obtained by tissue Doppler echocardiography, 
were also used as parameters of LV diastolic function.

For all analyses, a blood sample was taken between 7:00 and 
9:00 from the cubital vein of the patient who had been fasting 
since 22:00 the previous day. All analyses were carried out at 
the CMK laboratory. For the determination of serum uric acid, 
total cholesterol, low-density lipoprotein cholesterol (LDL-C), 
high-density lipoprotein cholesterol (HDL-C) and triglycerides, 
blood was collected in a dry tube and the assay was performed 
by colorimetric spectrophotometer (Helios Epsilon, Milwaukee, 
USA).

The blood glucose test was performed on plasma oxalate by 
colorimetric method using standard reagents (Biolabs) and was 
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measured by the Helios Epsilon spectrophotometer. The dosage 
of insulin was performed on EDTA plasma by ELISA. Reading 
the optical density was done on a string read from the firm 
Humareader Human (Germany). 

Hyperinsulinaemia was defined as a fasting insulin level > 90 
mmol/l and IR was defined by a HOMAIR ≥ 2.5.17 Normal LVM 
was defined as ≤ 115 g/m2 or ≤ 48 g/m2.7 in males and ≤ 95 g/m2 
or ≤ 44 g/m2.7 in females, with LVH defined as LVM exceeding 
those values.18

Four LV geometric patterns were defined as follows:18,19 
normal geometry (normal LVM and RWT ≤ 0.42); concentric 
remodelling (normal LVM and RWT > 0.42); concentric 
hypertrophy (LVH and RWT > 0.42); and eccentric hypertrophy 
(LVH and RWT ≤ 0.42).

Three patterns of diastolic dysfunction were defined as 
follows:20,21 abnormal relaxation (grade I: E/A ratio < 1 and 
prolonged deceleration time); pseudo-normal relaxation (grade 
II: E/A ratio > 1 and intermediate values of deceleration time); 
and restrictive patterns (reversible and irreversible, grade III–IV, 
respectively; E/A ratio > 2 and shortened deceleration time).

The dilation of the left atrium was defined by left atrial area 
> 20 cm2 of body surface area.15

Statistical analysis
Data are presented as number (n) and relative frequencies (%) 
for categorical variables and average (± standard deviation) for 
quantitative variables. Paired comparisons were carried out by 
Pearson’s chi-squared or Fischer’s exact test, as appropriate, for 
categorical variables, and multiple comparison of continuous 
variables (means and medians) by ANOVA and the H-test 

of Kruskal–Wallis. ANOVA tests, which were found to be 
significant at the threshold of p < 0.05, were supplemented by the 
Scheffé post hoc test, comparing the different groups two to two. 

The influence of HOMAIR and insulinaemia on the LV and 
diastolic parameters was investigated by linear regression in 
simple exploratory analysis, respectively. Correlation coefficients 
(r) were calculated to determine the degree of association 
between LV and diastolic parameters, and HOMAIR on one 
hand and insulinaemia on the other. When differences were 
observed between the ultrasound parameters and HOMAIR or 
insulin level, the effect of potential confounders was studied by 
adjustment in multiple linear regression. 

Finally, the determination coefficients (R2), were calculated 
to determine the degree of association between the ultrasound 
parameters of the left ventricle and HOMAIR or insulin level. 
The significance threshold was p < 0.05. Statistical analyses were 
performed using XLStat 2020 (Oxford, UK) and SPSS (Statistic 
Package for Social Sciences) 20 for Windows version 24 software 
(Chicago, USA).

Results
Socio-demographic and clinical characteristics of the patients 
according to LV geometry are shown in Table 1. Thirty-two 
(14.5%) patients (43.9 ± 9.1 years), 99 (45%) patients (52.4 ± 
8.7 years) and 89 (40.5%) patients (53.1 ± 9.8 years) had normal 
LV geometry, concentric LV remodelling and concentric LVH, 
respectively. No cases of eccentric LV hypertrophy were found. 
Compared to participants with normal LV geometry, those with 
LVH were significantly older, obese, sedentary, insulin-resistant 
and had more often a history of hypertension, dyslipidaemia, 

Table 1. Sociodemographic and clinical characteristics of patients according to LV geometry 

Variables 
All

(n = 220)
Normal LVG

(n = 32)
CR

 (n = 99)
Concentric LVH

(n = 89)
p-value normal 

LVG vs CR

p-value normal 
LVG vs concentric 

LVH
p-value concentric 

LVH vs CR

Age (years) 51.5 ± 9.7 43.9 ± 9.1 52.4 ± 8.7 53.1 ± 9.8 < 0.001 < 0.001 0.605

Gender 0.527 0.746 0.674

  Male 133 (60.5) 18 (56.3) 62 (62.6) 53 (59.6)

  Female 87 (39.5) 14 (43.8) 37 (37.4) 36 (40.4)

T2DM 26 (11.8) 4 (12.5) 13 (13.1) 9 (10.1) 0.930 0.708 0.674

Known HTN 136 (61.8) 12 (37.5) 63 (63.6) 61 (68.5) 0.009 0.002 0.523

ND HTN 84 (38.2) 20 (62.5) 36 (36.4) 28 (31.5) 0.010 0.002 0.480

Overweight 86 (39.1) 15 (46.9) 49 (49.5) 22 (24.7) 0.799 0.020 0.258

Obesity 112 (50.9) 10 (31.3) 36 (36.4) 66 (74.2) 0.601 < 0.001 0.005

Abdominal obesity 97 (44.1) 5 (15.6) 37 (37.4) 55 (61.8) 0.022 < 0.001 < 0.001

Sedentary 123 (55.9) 6 (18.8) 45 (45.5) 72 (80.9) 0.007 < 0.001 < 0.001

Dyslipidaemia 173 (78.6) 18 (56.3) 79 (79.8) 76 (85.4) 0.009 0.007 0.315

High AI 93 (42.3) 8 (25.0) 39 (39.4) 46 (51.7) 0.141 0.010 0.092

Hyperuricaemia 51 (23.2) 3 (9.4) 19 (19.2) 29 (32.6) 0.199 0.011 0.036

Uncontrolled HTN 182 (82.7) 28 (87.5) 85 (85.9) 69 (77.5) 0.820 0.226 0.136

BMI (kg/cm2) 30.2 ± 5.0 28.2 ± 4.8 28.7 ± 4.0 32.6 ± 5.1 0.560 < 0.001 < 0.001

SBP (mmHg) 135.9 ± 7.9 132.2 ± 7.9 133.8 ± 6.9 138.9 ± 7.8 0.273 < 0.001 0.926

DBP (mmHg) 81.0 ± 9.0 79.8 ± 7.5 79.9 ± 9.7 82.5 ± 8.6 0.957 0.118 0.054

WC (cm) 103.3 ± 12.4 95.4 ± 9.8 100.4 ± 9.8 109.4 ± 13.1 0.013 < 0.001 < 0.001

HR (bpm) 67.9 ± 13.7 69.1 ± 17.2 70.5 ± 11.5 62.1 ± 13.5 0.600 0.021 < 0.001

Hyperinsulinaemia 19 (8.6) 2 (6.3) 8 (8.1) 9 (10.1) 0.740 0.523 0.634

Insulin resistance 44 (20.0) 1 (3.1) 0 (0.0) 43 (48.3) 0.097 < 0.001 < 0.001

Variables are presented as mean ± SD or n (%).
LVG: left ventricular geometry; CR: concentric remodelling; LVH: left ventricular hypertrophy; T2D: type 2 diabetes mellitus; HTN: hypertension; ND HTN: newly 
diagnosed hypertension; AI: atherogenic index; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; WC: waist circumference; HR: 
heart rate.
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hyperuricaemia, higher atherogenicity index and higher systolic 
blood pressure. 

Table 1 also shows that for a statistically similar age, high blood 
pressure history, lipid and uric acid profile, those with concentric 
LVH were more often obese, sedentary and insulin-resistant. 
However, those with concentric remodelling, compared to those 
with normal LV geometry, were more often older, sedentary, and 
had more often a history of hypertension and dyslipidaemia.

The biological and echocardiographic characteristics are 
shown in Table 2. For similar total cholesterol and uric acid 
levels, participants with LVH had lower HDL-C levels, higher 
glycated haemoglobin and insulin levels, higher HOMAIR, 
thicker IVS, wider LVED and a higher LVM, with a lower LV 
ejection fraction than those with concentric remodelling. The 
E/A ratio was significantly lower for participants with concentric 
remodelling compared to those with normal LV geometry, and 
for those with LVH compared to normal LV geometry.

As illustrated in Table 3, as well as in Figs 1 to 6, the correlation 
between HOMAIR and LVED, IVS, PWT, sum of wall thickness 
(SWT), LVM indexed to height2.7 (LVMIh), LVM indexed to body 
surface area (LVMIbsa), RWT and E-wave deceleration was 29.8, 
41.6, 42.6, 44.1, 43.7, 44.5, 23.9 and 24.9%, respectively.

Multiple linear regression (Table 4) demonstrated that insulin 
level and HOMAIR explained 46.8% of the increase in IVS (R2 = 
0.468) and 30.9% of the increase in DT (R2 = 0.309). HOMAIR 
alone explained 30.1% of the increase in LVED (R2 = 0.301). 
Insulin alone explained 46.3% of the increase in PWT (R2 = 
0.463) and 29.4% for RWT (R2 = 0.294).

Table 2. Biological and ultrasound characteristics of patients according to LV geometry

Variables 
Total

(n = 220)
Normal

(n = 32)
CR  

(n = 99)
Concentric LVH

(n = 89)
p-value normal 

LVG vs CR

p-value normal 
LVG vs  

concentric LVH
p-value concentric 

LVH vs CR

Glycaemia (mmol/l) 5.8 ± 1.9 5.2 ± 1.2 5.4 ± 1.6 6.4 ± 2.2 0.517 0.004 0.004

TC (mmol/l) 5.5 ± 1.0 5.0 ± 1.0 5.5 ± 1.0 5.5 ± 1.0 0.015 0.017 0.999

LDL-C (mmol/l) 3.7 ± 1.1 3.3 ± 1.1 3.7 ± 1.1 3.9 ± 1.1 0.076 0.009 0.215

Triglycerides (mmol/l) 1.14 ± 0.6 0.91 ± 0.4 1.11 ± 0.6 1.25 ± 0.6 0.081 0.003 0.112

HDL-C (mmol/l) 1.21 ± 0.3 1.27 ± 0.3 1.28 ± 0.4 1.13 ± 0.3 0.897 0.025 0.004

AI 4.8 ± 1.6 4.1 ± 0.9 4.7 ± 1.9 5.2 ± 1.6 0.088 0.004 0.054

HbA1c (%) 6.1 ± 1.3 5.7 ± 1.0 5.9 ± 1.0 6.4 ± 1.6 0.327 0.022 0.010

Creatinine (mmol/l) 84.5 ± 19.0 84.5 ± 18.1 84.3 ± 15.8 84.6 ± 22.5 0.952 0.982 0.915

Uric acid (mmol/l) 367.1 ± 94.6 317.1 ± 78.6 363.6 ± 90.7 388.2 ± 97.9 0.010 0.003 0.075

Insulin (mmol/l) 92.9 ± 41.8 68.2 ± 21.4 73.3 ± 25.8 123.2 ± 43.0 0.314 < 0.001 < 0.001

Calcium (mmol/l) 2.33 ± 0.2 2.32 ± 0.3 2.34 ± 0.2 2.30 ± 0.2 0. 667 0.674 0.173

Ionised calcium (mmol/l) 1.21 ± 0.2 1.24 ± 0.2 1.21 ± 0.1 1.20 ± 0.1 0.462 0.277 0.496

Phosphorus (mmol/l) 1.08 ± 0.2 1.14 ± 0.5 1.08 ± 0.2 1.06 ± 0.2 0.328 0.210 0.495

Hb (mg/dl) 13.4 ± 1.4 13.6 ± 1.6 13.4 ± 1.4 13.3 ± 1.3 0.499 0.295 0.614

HOMAIR 1.79 ± 0.8 1.42 ± 0.8 1.39 ± 0.5 2.37 ± 0.8 0.802 < 0.001 < 0.001

LVED (mm) 44.3 ± 4.6 45.7 ± 2.6 41.9 ± 4.0 46.5 ± 4.4 < 0.001 0.335 < 0.001

IVS (mm) 11.5 ± 1.7 9.0 ± 1.2 11.2 ± 1.3 12.7 ± 1.1 < 0.001 < 0.001 < 0.001

PWT (mm) 11.4 ± 1.6 9.0 ± 0.8 11.2 ± 1.3 12.5 ± 0.9 < 0.001 < 0.001 < 0.001

SWT 22.9 ± 3.1 18.1 ± 1.9 22.3 ± 2.4 25.2 ± 1.6 < 0.001 < 0.001 < 0.001

LVEF 64.6 ± 5.1 63.8 ± 4.4 65.5 ± 4.9 63.7 ± 5.4 0.083 0.925 0.018

LVM (g) 183.0 ± 48.4 139.5 ± 24.6 160.9 ± 34.3 222.8 ± 38.5 0.001 < 0.001 < 0.001

LVMIh (g/m2.7) 44.4 ± 11.1 34.4 ± 5.2 38.4 ± 6.4 54.7 ± 8.4 0.002 < 0.001 < 0.001

LVMIbsa (g/m2) 91.2 ± 20.8 71.9 ± 10.5 81.8 ± 15.1 108.6 ± 15.6 0.008 < 0.001 < 0.001

RWT 0.52 ± 0.1 0.40 ± 0.1 0.54 ± 0.1 0.55 ± 0.07 < 0.001 < 0.001 0.433

E (cm/s) 0.99 ± 0.7 1.31 ± 0.9 1.00 ± 0.5 0.86 ± 0.9 0.015 < 0.001 0.183

E/A ratio 0.99 ± 0.2 1.15 ± 0.1 0.75 ± 0.2 0.71 ± 0.2 < 0.001  < 0.001 0.173

DT (ms) 201.9 ± 40.0 178.1 ± 29.4 197.8 ± 39.2 215.3 ± 39.6 0.011 < 0.001 0.003

Sa (cm/s) 12.4 ± 1.4 12.9 ± 1.2 12.3 ± 1.2 12.4 ± 1.6 0.015 0.109 0.626

LAA (cm2) 15.7 ± 3.3 13.8 ± 1.9 14.9 ± 2.8 17.3 ± 3.5 0.040 < 0.001 < 0.001

sPAP (mmHg) 26.4 ± 2.9 24.5 ± 1.9 26.5 ± 2.7 27.0 ± 3.1 0.002 < 0.001 0.239

Variables are presented as mean ± SD or n (%).
CR: concentric remodelling; TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HD-C: high-density lipoprotein cholesterol; AI: atherogenic index; 
HbA1c: glycated haemoglobin; Hb: haemoglobin; HOMAIR: homeostatic model assessment for insulin resistance; LVED: left ventricular end-diastolic diameter; IVS: 
interventricular septum diameter; PWT: posterior wall thickness; SWT: sum of wall thickness; LVEF: left ventricular ejection fraction; LVM: left ventricular mass; 
LVMIh: left ventricular mass indexed to height2.7; LVMIbsa: left ventricular mass indexed to body surface area; RWT: relative wall thickness; E: peak E-wave velocity; 
DT: deceleration time; LAA: left atrial area; sPAP: systolic pulmonary arterial pressure.

Table 3. Correlation between HOMAIR, insulinaemia and LV 
measurments and diastolic function parameters

Variables 

HOMAIR Insulin

r p-value r p-value

LVED (mm) 0.298 < 0.001 0.273 < 0.001

IVS (mm) 0.416 < 0.001 0.468 < 0.001

PWT (mm) 0.426 < 0.001 0.463 < 0.001

SWT 0.441 < 0.001 0.489 < 0.001

LVMIh (g/m2.7) 0.437 < 0.001 0.448 < 0.001

LVMIbsa (g/m2) 0.445 < 0.001 0.472 < 0.001

RWT 0.239 < 0.001 0.288 < 0.001

DT (ms) 0.249 < 0.001 0.304 < 0.001

LVED: left ventricular end-diastolic diameter; IVS: interventricular septum; 
PWT: posterior wall thickness; SWT: sum of wall thickness; LVMIh: left 
ventricular mass indexed to height2.7; LVMbsa: left ventricular mass indexed to 
body surface area; RWT: relative wall thickness; DT: deceleration time.



CARDIOVASCULAR JOURNAL OF AFRICA • Advance Online Publication, June 2023AFRICA 5

Discussion
The purpose of this study was to evaluate the association of IR/
hyperinsulinaemia with components of Devereux’s formula and 
parameters of LV diastolic function.

The results suggest that IR and hyperinsulinaemia have 
different effects on components of  Devereux’s formula, 
depending on whether they act in synergy or in isolation. IR 
alone appears to increase LVM only by dilation of LVED, while 

hyperinsulinaemia alone may increase LVM by a trophic effect 
on the posterior wall. Only their synergistic action seems to 
have a trophic effect on the IVS but also a deleterious effect on 
diastolic function. 

These findings make the thorny question of ‘the egg and 
the chicken’ between IR and hyperinsulinaemia appear as 
a watermark. The cause–effect relationship between IR and 
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Fig. 2. HOMAIR and interventricular septum.
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hyperinsulinaemia is still debated, since these two conditions 
are closely associated. It is possible that the two conditions 
are related by a reciprocal causal relationship, since there are 
plausible physiopathological explanations justifying the role of 
the ‘chicken or egg’ for each of the conditions, respectively.

The pathophysiological mechanisms by which IR promotes 
LVH and diastolic dysfunction have been the subject of several 
experimental studies.22-24 The starting point of a complex metabolic 
cascade during IR, culminating in structural and functional 
anomalies of the left ventricle, is the almost exclusive recourse 
to the metabolism of fatty acids as fuel. Indeed, in a situation of 
adequate insulin sensitivity, free fatty acids constitute the main 
fuel for the production of energy22,25 necessary for uninterrupted 
and highly endergonic myocardial activity.22 However, the heart 
machinery is capable of remarkable metabolic adaptability, 
allowing it, if  necessary, to resort to other sources of energy such 
as glucose, pyruvate and ketone bodies.22,26 

On the contrary, in the IR state, this metabolic flexibility is 
lost.27 The synthesis of glycogen and the catabolism of proteins 
in skeletal muscles is impaired, and the activity of lipoprotein 
lipases in adipocytes is inhibited, resulting in an increased 
release of free fatty acids and inflammatory cytokines such as 
interleukin-6, tumour necrosis factor alpha and leptin.28,29 The 
heart is therefore integrated in an environment rich in fatty acids 
and glucose.30-33 This stimulates the absorption of free fatty acids 
into the myocardium33,34 due to upregulation of CD36,31 which 
is a powerful transporter of free fatty acids, thus increasing the 
levels of intracellular fatty acids and the expression of PPAR-α. 
The excess lipids in the cardiomyocytes are transferred into 
non-oxidative pathways, leading to the accumulation of toxic 
lipid species such as ceramides, diacylglycerols, long chain acyl-
CoA and acylcarnitines,35 which contribute to alteration of 
mitochondrial function, apoptosis and cardiac hypertrophy.36,37 

Insulin regulates a wide range of functions in the heart, 
including heart growth.38 The responsibility for hyperinsulinaemia, 
which may be a cause or a consequence of IR39 in the development 
of LVH,8,9 and the deterioration of diastolic function8,40,41 is 
generally accepted and could be accounted for by the trophic and 
profibrotic properties of insulin.8,9,42,43

The dilator effect of IR on the LVED could be explained 
by volume overload. The latter is the consequence of insulin-
induced sodium retention.44-47

Our results indicate that 29.4% of variation in RWT could be 
explained by insulinaemia, suggesting concentric remodelling. 
We also found that IR and hyperinsulinaemia increased the 
DT, which is a parameter of grade I diastolic dysfunction,19,21 in 
31% of patients (R2 = 0.309). These findings are in accordance 
with the results of a population-based prospective study by 
Cauwenberghs et al.48 showing that basal IR and its increase 
during follow up was positively associated with development of 
concentric LVH. Similarly, Velagaleti et al. assessed the influence 
of IR on LVM, measured by magnetic resonance imaging, and 
also concluded that IR caused concentric LVH.49 

Participants in the study by Cauwenberghs et al., who 
remained or became IR during follow up, experienced worse 
changes in E/e′, which is a parameter of diastolic dysfunction.19,21 
Such diastolic dysfunction is probably imputable to IR,50 with 
underlying LVH and myocardial fibrosis.21,51-54 But this is still a 
subject of debate, as a certain degree of diastolic dysfunction 
exists in hypertensive patients long before they develop LVH,55 
and regression of LVH after antihypertensive treatment does 
not necessarily lead to normalisation of diastolic function.56 
Nonetheless, some studies have shown that normalisation of 
LVM leads to normalisation of diastolic function.57

Therefore, IR/hyperinsulinaemia appears to increase 
cardiovascular risk in patients with hypertension, at least in part, 
by promoting concentric LVH and diastolic dysfunction. Indeed, 
concentric LVH is the independent cardiovascular risk factor 
most strongly associated with a poor prognosis,12 and diastolic 
dysfunction is a strong predictor of cardiovascular outcomes in 
essential hypertension.58,59

Strengths and limitations
Our study has to be interpreted within the context of its potential 
strengths and limitations. To the best of our knowledge, this 
is the first study to address the question of the collective or 
individual influence of IR/hyperinsulinaemia on the components 
of Devereux’s formula and on the parameters of diastolic 
function in Africans. 

However echocardiographic measurements are prone to 
errors as a result of signal noise, acoustic artefacts and angle 
dependency, although in our study, echocardiography was 
performed by an experienced cardiologist with post-graduate 
training in cardiac imaging. Moreover, the cross-sectional 
design of this study is a limitation, which means that causal 
relationships cannot be firmly established. Also, measurement 
of waist circumference at the level of the umbilicus is a possible 
cause of error as it will vary with the habitus of the individual, 
obese individuals with protuberant abdominal walls or those 
with a large umbilical hernia, giving false measurements. Finally, 
the in-hospital and single-centre design precludes extrapolation 
of the results to all essential hypertensive patients.

Table 4. Multiple linear regression analysis between  
HOMAIR, insulin and LV echocardiographic parameters

Parameters

Equation parameters

β SE p-value R2

Overall 
p-value

LVED (mm) 0.301 0.001

(constant) 41.375 0.729 0.000

HOMAIR 1.599 0.823 0.013

Insulin 0.001 0.017 0.954

IVS (mm) 0.468 < 0.001

(constant) 9.723 0.254 0.000

HOMAIR 0.860 0.287 0.016

Insulin 0.021 0.006 0.000

PWT (mm) 0.463 < 0.001

(constant) 9.787 0.230 0.000

HOMAIR 0.063 0.260 0.810

Insulin 0.016 0.005 0.002

RWT 0.294 0.011

(constant) 0.467 0.014 0.000

HOMAIR 0.014 0.016 0.377

Insulin 0.001 0.000 0.007

DT ms 0.309 0.003

(constant) 175.610 6.374 0.000

HOMAIR 6.453 7.203 0.017

Insulin 0.409 0.145 0.005

LVED: left ventricular end-diastolic diameter; IVS: interventricular septum; 
PWT: posterior wall thickness; RWT: relative wall thickness; DT: deceleration 
time.
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Conclusions
Our study suggests that IR appears to act on LVED, while 
hyperinsulinaemia affects the PWT. Both conditions act on 
the IVS and contribute to diastolic dysfunction via E-wave 
deceleration time. Insulin sensitivity of hypertensive patients 
should therefore be of concern to the physician managing 
hypertension, in order to take appropriate measures to improve 
the prognosis. A prospective, population-based study with serial 
imaging remains essential to better understand subclinical 
LV deterioration over time and to confirm the role of IR in 
essential hypertensives. Even better would be the Mendelian 
randomisation approach, which would however be costly, time 
consuming and more difficult to apply.

We gratefully acknowledge  Dr Rodolph Amhed, managing director of the 
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