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Left ventricular twist before and after haemodialysis: an 
analysis using speckle-tracking echocardiography
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Abstract
Background: The most commonly used parameter of cardiac 
function in the chronic kidney disease (CKD) patient is ejec-
tion fraction (EF), using transthoracic echocardiography 
(TTE). EF is a highly load-dependent measurement, which 
varies considerably in CKD patients undergoing haemodi-
alysis. The aim of this pilot study was to evaluate a novel 
measure of myocardial function, left ventricular twist, which 
is defined as the ‘wringing action of the heart’, using speckle-
tracking echocardiography in CKD patients before and after 
haemodialysis.
Methods: Twenty-six patients were recruited from the 
Chris Hani Baragwanath Hospital haemodialysis unit. 
TTE was performed according to a detailed standardised 
protocol before and after a single haemodialysis session. 
Echocardiography was also performed on 26 age- and gender-
matched healthy subjects.
Results: The mean age of the control versus CKD group was 
44 ± 11.4 and 43.4 ± 12.2 years, respectively; 46% were male. 
Apical rotation was diminished in CKD patients compared to 
controls (4.83 ± 2.3 vs 6.31 ± 1.6 °; p = 0.01) despite no differ-
ence in EF (61.7 ± 6.2 vs 58.8 ± 13; p = 0.68). There were no 
differences in the components of twist: apical rotation, basal 
rotation and net twist before and after dialysis, despite an 
increase in EF (58.8 ± 13.7 vs 61.2 ± 13.6; p = 0.02) following 
dialysis.

Conclusion: Unlike EF, the components of twist are relatively 
independent of changes in haemodynamic load seen during 
dialysis. The decrease in apical rotation may represent an 
early marker of cardiac pathology in the late-stage CKD 
patient.
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Cardiovascular pathology accounts for half of the deaths in 
chronic kidney disease (CKD) patients.1,2 Causes of increased 
mortality rates include sudden death from arrhythmias, 
heart failure and ischaemic heart disease.1,3-6 Transthoracic 
echocardiography (TTE) is the most commonly used imaging 
modality to assess cardiac function in patients with CKD. 
However, the most widely used echocardiographic measurement 
is ejection fraction (EF), which is load dependent and varies 
considerably with the volume shifts experienced during 
haemodialysis.7 

Cardio-renal specialists have explored other measures to 
evaluate cardiac function in CKD, using myocardial deformation 
or strain, which more accurately describes ventricular movement 
during systolic and diastolic function. It consists of longitudinal, 
radial and circumferential strain, and ventricular twist.8 Tissue 
Doppler imaging was previously used to measure strain but 
required correct alignment of the Doppler signal to the angle 
of the myocardial fibres.8 In recent years, speckle-tracking 
echocardiography (STE) has emerged as a potentially more 
accurate technique to measure myocardial deformation.9

STE is an echocardiographic modality based on the accurate 
tracking of groups of pixels called ‘speckles’ throughout the 
cardiac cycle.9 Using this technique, parameters reflecting 
myocardial deformation, such as global longitudinal strain, 
radial and circumferential strain, and left ventricular twist can 
be assessed. The initial studies conducted in chronic kidney 
disease patients using speckle tracking to evaluate myocardial 
function demonstrated a reduction in longitudinal strain but 
not in circumferential or radial strain and did not evaluate left 
ventricular twist.10-12 

Left ventricular (LV) twist is described as a ‘wringing’ 
action of the heart. It represents a clockwise rotation of the 
base and a counter-clockwise rotation of the apex during 
systole.13Using STE, LV twist14 has been validated against 
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magnetic resonance imaging (MRI)15 and evaluated in conditions 
such as hypertension,16 ischaemic heart disease17 and a variety 
of cardiomyopathies.18 In CKD, LV twist has been shown 
to increase as calculated glomerular filtration rate (GFR) 
decreased.19-21 A major limitation of the above studies on LV 
twist is that the impact of varying loading conditions in patients 
undergoing haemodialysis was not evaluated. 

The aim of this pilot study was to examine LV twist in 
African patients with stage 5 CKD before and after a single 
haemodialysis session.

Methods
This prospective, longitudinal, single-centre study was 
conducted at the Chris Hani Baragwanath Hospital Renal 
Unit in Johannesburg, South Africa. Volunteers were screened 
from November 2010 until February 2011. Inclusion criteria 
were: ages between 20 and 65 years and documented CKD on 
intermittent haemodialysis three times weekly. Exclusion criteria 
were: pre-existing cardiac disease, known coronary artery disease, 
valvular heart disease, arrhythmias, and poor echocardiography 
windows that precluded speckle tracking.

Of the 71 patients receiving intermittent haemodialysis in 
this unit, 26 meeting the entry criteria were recruited among 
volunteers (Fig. 1). Similarly, 26 age- and gender-matched 
individuals were recruited from healthy volunteers with no known 
underlying medical conditions among unrelated staff members 
at Chris Hani Baragwanath Hospital and local churches around 
the Soweto, Johannesburg area.22

Ethics approval for this study was obtained from the University 
of the Witwatersrand human research ethics committee. Written 
informed consent was obtained from all patients, and the study 
protocol (approval number M10510) conformed to the 1975 
Declaration of Helsinki.

Patients with CKD with end-stage kidney failure (ESKF) 
were on three-times-a-week intermittent haemodialysis (HD). 
Haemodialysis was performed for an average of four hours with 
mean ultrafiltration volume of 2.2 ± 0.9 litres, using bicarbonate 
dialysate. Fresenius FX dialysers were used, with most patients 
dialysed on the FX 80 dialysers, although the range of dialysers 
used were FX 60, FX 80 and FX 100, according to the patient’s 
weight.

The recombinant erythropoietin, epoetin-beta, was used 
to maintain haemoglobin levels at a target of 11 to 12 g/dl, in 
keeping with KDIGO guidelines at the time. An average of 
12 000 units was given subcutaneously per patient per week. 
Eighty-eight per cent of patients receiving haemodialysis were 
on an ACE inhibitor or angiotensin receptor blocker, with the 
most frequently used agents being perindopril and telmisartan.

All 52 participants underwent complete transthoracic 
echocardiographic evaluation. CKD patients were evaluated 
before and within an hour of a single haemodialysis session. 
According to a standardised protocol used by our institution,22-25 
a comprehensive echocardiographic examination was performed 
in the lateral decubitus position using a commercially available 
system (iE33 xMATRIX, Philips Healthcare, Andover, MA, 
USA) equipped with an S5-1 transducer (frequency transmitted 
1.7 MHz, frequency received 3.4 MHz). Measurements obtained 
were averaged from three heartbeats. All data were transferred to 
an Xcelera workstation (Phillips Healthcare) for offline analysis.

Chamber size measurements and function were performed 
according to the American Society of Echocardiography (ASE) 
chamber quantification guidelines of 2006.26,27 EF was calculated 
using LV volumes with the modified biplane Simpson’s rule, in 
keeping with guidelines.26 Diastolic function was evaluated and 
analysed in accordance with the ASE 2009 guidelines.28

Left ventricular end-diastolic volume (LVEDV) was taken 
as representative markers of preload. Pulse pressure over stroke 
volume (PP/SV) was used as a surrogate of arterial stiffness,29,30 
which takes into account the contributions of systemic vascular 
resistance (SVR) and ventricular compliance to afterload.31 
PP/SV has previously been validated as a measure of arterial 
stiffness and afterload in trials such as the LIFE study.32 Mean 
arterial pressure (MAP) was used as an indirect marker for 
afterload as it is a major contributor to SVR.

Speckle-tracking basal images were obtained in the parasternal 
short axis at the level of the mitral valve, showing the tips of 
leaflets with the most circular image possible. Apical images were 
acquired by moving the transducer one or two spaces caudally, 
using a method described by van Dalen.33

Images were acquired at a frame rate of 50–80 frames/s during 
sinus rhythm with less than 10% variability in heart rate for optimal 
speckle tracking.18 These images were reviewed and analysed by 
a cardiologist experienced in STE, using QLAB Advanced 
Quantification software (Version 8.0, Philips Healthcare).9,34 
Tracking points were placed within the myocardium to avoid 
the pericardium. In keeping with ASE/European Association of 
Echocardiography (EAE) consensus,35 counter-clockwise rotation 
was assigned a positive value and clockwise rotation a negative 
value as viewed from the apex (Figs 2, 3).

Chris Hani Baragwanath 
Hospital haemodialysis unit
71 patients attending morning, 
afternoon or evening shift

30 patients refused consent due 
to difficulties with transport

41 patients with 
informed consent and 
preliminary screening and 
echocardiography performed 
before and after dialysis

8 patients excluded with 
pre-existing cardiac disease 
such as valvular heart disease 
or did not meet entry criteria

33 patients’ echocardiography 
performed with speckle tracking 
analysis performed

26 haemodialysis with pre- and 
post-dialysis echocardiography 
images and speckle-tracking 
imaging included for final 
analysis with age- and gender- 
matched controls

7 patients had more than two 
segments that did not track 
adequately using speckle-
tracking

Fig. 1. Flow chart of patient recruitment.
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Peak apical rotation was measured during the ejection systolic 
phase. Basal rotation was measured at a time isochronous to peak 
apical systolic rotation, in keeping with a standard protocol used 
by our institution, which has previously been published.22,24,25 Net 
instantaneous twist was calculated as peak apical rotation minus 
the isochronous basal rotation.

Measurements were independently made by two cardiologists 
trained in STE. The combined mean inter-observer variability 
for measurements of apical, basal and net twist of renal 
patients pre-dialysis was 3.67% (range 2–37%) and post-dialysis 
3.7% (range 2.5–31%). The mean intra-observer variability 
pre-dialysis was 2.76% (range 2–10%) and post-dialysis 3.72% 
(range 2.5–26%).

Statistical analysis
Data were analysed using the Statistica version 11 (Statsoft; 
Tulsa, Oklahoma, USA) program. Results are expressed as means 
with standard deviations or medians for non-normal distribution 
or frequencies, and percentages for categorical variables. To 
assess differences between the control groups versus pre-dialysis 
patients, and control versus post-dialysis patients, the Mann–
Whitney test for non-normally distributed variables was used. 
Pre-dialysis and post-dialysis comparisons were performed with 
the Wilcoxon matched paired test. Significance was assumed 
at two-sided values of p < 0.05. Fisher’s exact test was used to 
compare categorical data. The Schapiro–Wilk test was used to 
assess normality. Univariate linear regression analysis was used 
to identify independent factors associated with twist pre-dialysis 
and post-dialysis, and change in twist.

Results
Clinical characteristics of control participants and CKD patients 
are summarised in Table 1. The mean ages of control versus 
CKD patients were 44.0 ± 11.4 versus 43.4 ± 12.2 years (p = 
0.81), with a 46% male incidence in both groups. The most 
common aetiology of the CKD patients was hypertension (81%). 
Weight (mean 66.2 ± 8.5 vs 65.2 ± 12.9 kg; p = 0.44), body mass 
index (BMI) and body surface area (BSA) were similar between 

the groups (Table 1). By contrast, with the CKD patients, the 
pre-dialysis systolic blood pressure, diastolic blood pressure, 
mean arterial pressure and pulse pressure were significantly 
higher compared to levels observed in the control group  
(Table 1).

On echocardiography, patients on haemodialysis had 
significantly higher pre-dialysis LV diastolic volumes, LV 
end-systolic volumes, LV end-systolic diameter (LVESD) and 
stroke volume compared to the controls, whereas there was no 
difference in EF and PP/SV (Table 2). In addition, patients on 
haemodialysis had significantly thicker LV walls and greater 
LV mass compared to controls. LV hypertrophy (LVH) was 
present in 88% of renal patients (23 of 26 patients). In those 

Table 1. Clinical characteristics of patients and controls

Characteristics
Control  
(n = 26)

Pre-dialysis  
(n = 26)

Post-dialysis  
(n = 26)

Mean age (years) 44.0 ± 11.4 43.4 ± 12.2 –

Male gender, n (%) 12 (46) 12 (46) –

Height (cm) 163.6 ± 8.9 164.0 ± 9.6 –

Weight (kg) 66.2 ± 8.5 65.2 ± 12.9 63.0 ± 12.6†

Change in weight (kg) – – 2.2 ± 1.0

Haemoglobin (g/dl) – 9.9 ± 2.3  -

Heart rate (beats/min) 70.3 ± 11.9 81.8 ± 11.9* 89.7 ± 18.3

Body mass index (kg/m2) 24.7 ± 2.5 24.2 ± 4.0 –

Body surface area (m2) 1.7 ± 0.1 1.7 ± 0.2 –

Diabetes mellitus, n (%)  0 2 (8)* –

Hypertension, n (%)  0 22 (81)* –

Systolic blood pressure (mmHg) 122.7 ± 5.1 151.8 ± 17.6* 145.0 ± 24.5

Diastolic blood pressure (mmHg) 75.5± 10.2 90.1 ± 14.1* 88.4 ± 16.5

Mean arterial pressure (mmHg) 91.2 ± 7.4 110.6 ± 13.7* 107.4 ± 18.0

Pulse pressure (mmHg) 47.2 ± 10.3 61.7 ± 14.4* 56.6 ± 16.3

Volume ultra-filtrated  (l) – – 2.2 ± 0.9

Years on dialysis – 6.7 ± 3.4 –

Corrected calcium (mmol/l) – 2.3 ± 0.3 –

Corrected calcium (g/dl) – 9.2 ± 1.3 –

Phosphate (mmol/l) – 1.3 ± 0.5 –

Phosphate (g/dl) – 4.1 ± 1.7 –

Calcium × phosphate product (g2/dl2) – 37.6 ± 15.5 –

Parathyroid hormone level (pg/ml) – 66 ± 68 –

*p-value < 0.05 vs control group, †p-value < 0.05 vs pre-dialysis group. 

Fig. 3. Basal rotation in the short-axis view. Fig. 2. Short-axis view through the apex.
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patients with hypertrophy, 96% (22 patients) were concentric 
in pattern and 4% had eccentric hypertrophy (one patient). As 
expected, patients had diastolic dysfunction with significantly 
greater indices of elevated filling pressure [E/E′ and left atrial 
(LA) volume index] pre-dialysis compared to the normal control 
group.

During dialysis, CKD patients were ultra-filtrated a mean of 
2.2 ± 0.9 litres, with a mean change in weight of 2.2 ± 1.0 kg. 
As a result, there was a significant difference in pre- and post-
dialysis weights (Table 1). No statistically significant differences 
between systolic, diastolic, mean arterial pressure and heart rate 
were found.

There was a significant decrease in LVEDV, LVESV, E/E′ and 
LA volume index (LAVI)  after dialysis whereas a significant 
increment in EF was noted compared to pre-dialysis values 
(Table 2). However, the stroke volume and PP/SV did not change.

At baseline, there was no difference in net speckle-tracking 
twist and basal rotation between controls compared to CKD 
patients prior to their dialysis session. However, there was a 
significant decrease in apical rotation between the control and 
pre-dialysis group (6.3 ± 1.6 vs 4.8 ± 2.3°; p = 0.01). There was 
no statistically significant difference when comparing net twist, 
basal rotation or apical rotation in CKD patients before and 
after dialysis (Table 3).

In the univariate linear regression analysis of twist, the 
presence of hypertension, diabetes, the use of ACE inhibitor 
or angiotensin receptor blocker (ARB), and change in weight 
before and after dialysis were compared against the difference 
in apical, basal and net twist before and after dialysis. These 
variables showed a trend towards statistical significance with an 
independent association between hypertension and the difference 
in apical twist (regression coefficient of 0.34; p = 0.088), and in 

the use of an ACE inhibitor or ARB versus net twist (regression 
coefficient of 0.34; p = 0.09). A significant association was 
demonstrated between the differences in systolic and diastolic 
blood pressure versus basal twist post-dialysis (p = 0.02 and p = 
0.006, respectively), and the difference in diastolic blood pressure 
and apical twist post-dialysis (p = 0.04).

Discussion
The major findings of this study are (1) apical rotation appears 
to be reduced in patients on chronic haemodialysis with net 
twist remaining unchanged; and (2) LV twist is less susceptible 
to haemodynamic fluctuations associated with dialysis than EF.

The use of EF as a measure of systolic function in CKD 
is suboptimal because of the variable load changes and the 
effects of uraemic metabolites during dialysis. According to 
the ‘Starling effect’, LV function is determined by load, with 
increasing preload resulting in improved LV function, and vice 
versa. Similarly, systolic function is inversely related to afterload. 
However, it is not only load changes that play a role in systolic 
function in CKD patients on dialysis. An additional possibility 
is that the removal of negatively inotropic uraemic toxins during 
haemodialysis improves cardiac function.7,11,36 In clinical practice, 
trying to predict the relative interplay of load changes and 
uraemia on EF is extremely complex.7

In this study, CKD patients had similar EF to the control 
participants at baseline, which is not surprising since systolic 
dysfunction is seen in only 15% of CKD patients.37 During 
dialysis, there was a significant reduction in preload (LVEDV, 
LVESV, LAVI and E/Ea ratios), but no significant change in 
afterload (MAP and PP/SV ratios).31 Therefore, it would be 
reasonable to postulate that the EF should have been reduced, 
according to Starling. Since EF increased after dialysis, the 
removal of uraemic metabolites during haemodialysis may have 
been responsible for the improvement.7 

Considering these changes, one might suppose that if  apical, 
basal and net twist were subject to load changes, any or all of 
these parameters would decrease with reduced preload. These 
measures of rotation did not change with dialysis. This lack of 
significant change after dialysis implies that the components of 
myocardial rotation: apical rotation, basal rotation and net LV 
twist are relatively load independent, but whether they are also 
relatively immune to the acute metabolic changes of uraemia 
requires further study.

The key to understanding LV twist and its contribution to 
cardiac systolic function is in understanding the arrangement of 
myocardial fibres in a ‘left-handed’ helix sub-endocardially with 
clockwise rotation, and a ‘right-handed’ helix sub-epicardially 
with counter-clockwise rotation (Fig. 4). In normal cardiac 
physiology, apical rotation provides the greater contribution to net 
twist because of the larger radius of rotation of its sub-epicardial 
predominant fibres compared to the sub-endocardial 
predominant base. For example, conditions that are known to 
affect mainly the sub-endocardial layer of the myocardium, 
such as hypertensive LVH,38 aortic stenosis,39 hypertrophic 
cardiomyopathy,39 amyloidosis40 and early myocardial ischaemia41 
have been shown to cause apical hyper-rotation through the 
relatively unopposed sub-epicardial muscle fibres. This may be a 
compensatory function to preserve systolic function, with many 
of these conditions showing increase in net LV twist despite a 

Table 3. Speckle-tracking characteristics

Characteristics
Control
(n = 26)

Pre-dialysis
(n = 26)

Post-dialysis
(n = 26)

Apical rotation (°) 6.3 ± 1.6 4.8 ± 2.3* 5.5 ± 3.6

Basal rotation (°) –3.3 ± 1 –3.4 ± 1.9 –3.3 ± 1.9

Net twist (°) 9.6 ± 1.9 8.2 ± 3.1 8.8 ± 4.1

*p-value < 0.05 vs control group.

Table 2. Echocardiographic characteristics

Characteristics
Control
(n = 26)

Pre-dialysis
(n = 26)

Post-dialysis
(n = 26)

LV end-diastolic volume (ml) 71.0 ± 9.8 97.9 ± 39.2* 83.5 ± 23.9†

LV end-systolic volume (ml) 30.6 ± 7.6 41.1 ± 23.7 35.2 ± 20.3†

Stroke volume (ml) 40.5 ± 10.2 57.4 ± 28.3* 49.3 ±16.5

LV end-diastolic diameter (mm) 44.9 ± 0.3 45.8 ± 0.7 45.3 ± 0.6

LV end-systolic diameter (mm) 28.8 ± 0.4 32 .0 ± 0.6* 29.7 ± 0.6

Interventricular septal diameter 
(mm) 

10.0 ± 0.2 14.1 ± 0.3* 14.0 ± 0.3

Posterior wall thickness (mm) 9 .0 ± 0.1 13.5 ± 0.3* 13.2 ± 0.3

Relative wall thickness (mm) 0.4 ± 0.04 0.6 ± 0.1* 0.6 ± 0.1

Ejection fraction (%) 61.7 ± 6.2 58.8 ± 13.7 61.2 ± 13.6†

LV mass index (g/m2) 84.5 ± 18.9 156.1 ± 61.9* 152.7 ± 62

Left atrial volume index(ml) 25.8 ± 5.6 33.4 ± 15.2 * 27.8 ± 15.6†

Mitral E/A (ratio) 1.2 ± 0.4 1.1 ± 0.4 1.1 ± 0.7

E/E′ (ratio) 9.8 ± 2.4 15.2 ± 5.2* 13.0 ± 5.8†

Pulse pressure/stroke volume 
(mmHg/ml)

1.3 ± 0.8 1.4 ± 0.9 1.3 ± 0.8

*p-value < 0.05 vs control group, †p-value < 0.05 vs pre-dialysis group‡
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reduction in global longitudinal strain.22 
This compensatory increase in twist present in the CKD 

patient was documented in a study by Panoulas et al.19 This 
study demonstrated that twist increases while longitudinal 
strain decreases in CKD patients with preserved EF. This is 
postulated to represent an adaptive mechanism to preserve 
EF in the face of declining longitudinal myocardial function. 
The increase in twist was inversely related to worsening GFR 
in patients with preserved EF.19 By contrast, our study, which 
only included very late-stage CKD patients, showed significant 
decrease in the apical myocardial rotation with no difference in 
net twist found in haemodialysis patients compared to controls. 
This is despite there being no difference in baseline EF between 
the dialysis patients and controls, implying that diminution of 
apical rotation and a normal LV twist as opposed to an expected 
increase in twist may be an early indicator of further myocardial 
dysfunction and loss of compensatory mechanisms aimed to 
preserve EF (Fig. 4).

The limitations of this study are that it was a pilot study using 
a single vendor (Philips Healthcare). The small sample size was 
due to the size of the haemodialysis patient population at our 
institution. This did not allow adequate numbers to perform 
multiple linear regression analysis. The homogenous nature of 
our study population may not translate to other patient cohorts. 
It would be useful in larger studies to determine how twist 
is affected in CKD patients with and without hypertension. 
Multicentre studies with longitudinal follow up may confirm the 
findings of this study.

Conclusion

LV twist and its derived rotational parameters did not change 
significantly post-dialysis compared to pre-dialysis. This may 
suggest that these parameters are less affected by varying loading 
conditions post-dialysis. The decrease in apical rotation observed 
in late-stage CKD patients compared to controls may represent 

an early marker of loss of rotational compensation, which 
preserves EF in the CKD patient 

This study was supported by unrestricted research grants by Medtronic Ltd, 

Servier Ltd and Novartis AG. 
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