Cardiovascular Journal of Africa: Vol 33 No 2 (MARCH/APRIL 2022)

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 33, No 2, March/April 2022 72 AFRICA necrosis factor-alpha in normal pregnancies and in pregnancies complicated by preeclampsia. J Matern Fetal Neonatal Med 2010; 23(8): 880–886. 18. Bokslag A, Franssen C, Alma LJ, Kovacevic I, Kesteren FV, Teunissen PW, et al. Early-onset preeclampsia predisposes to preclinical diastolic left ventricular dysfunction in the fifth decade of life: An observational study. PLoS One 2018; 13(6): e0198908. 19. Kubota T, Miyagishima M, Alvarez RJ, Kormos R, Rosenblum WD, Demetris AJ, et al. Expression of proinflammatory cytokines in the failing human heart: comparison of recent-onset and end-stage congestive heart failure. J Heart Lung Transplant 2000; 19(9): 819–824. 20. Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith CW, Michael LH, et al. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 1999; 99(4): 546–551. 21. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentrationof IL-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101: 1767–1772. 22. Melchiorre K, Sutherland GR, Baltabaeva A, Liberati M, Thilaganathan B. Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertension 2011; 57(1): 85–93. 23. Melchiorre K, Sutherland GR, Watt-Coote I, Liberati M, Thilaganathan B. Severe myocardial impairment and chamber dysfunction in preterm preeclampsia. Hypertens Pregnancy 2012; 31(4): 454–471. 24. Fayers S, Moodley J, Naidoo DP. Cardiovascular haemodynamics in pre-eclampsia using brain naturetic peptide and tissue Doppler studies. Cardiovasc J Afr 2013; 24(4): 130–136. 25. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015; 16(3): 233–270. Erratum in: Eur Heart J Cardiovasc Imaging 2016; 17(4): 412. Erratum in: Eur Heart J Cardiovasc Imaging 2016; 17(9): 969. 26. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016; 17(12): 1321–1360. 27. Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol 2012; 64(4): 309–320. 28. Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Böhm M, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res 2004; 94(4): 534–541. 29. Teran E, Escudero C, Moya W, Flores M, Vallance P, Lopez-Jaramillo P. Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia. Int J Gynaecol Obstet 2001; 75: 243–249. 30. Sharma A, Satyam A, Sharma JB. Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol 2007; 58: 21–30. 31. Jonsson Y, Rubèr M, Matthiesen L, Berg G, Nieminen K, Sharma S, et al. Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J Reprod Immunol 2006; 70(1–2): 83–91. 32. Singh A, Sharma D, Raghunandan C, Bhattacharjee J. Role of inflammatory cytokines and eNOS gene polymorphism in pathophysiology of pre-eclampsia. Am J Reprod Immunol 2010; 63(3): 244–251. 33. Borekci B, Aksoy H, Al RA, Demircan B, Kadanali S. Maternal serum interleukin-10, interleukin-2 and interleukin-6 in pre-eclampsia and eclampsia. Am J Reprod Immunol 2007; 58(1): 56–64. 34. Xiao JP, Yin YX, Gao YF, Lau S, Shen F, Zhao M, et al. The increased maternal serum levels of IL-6 are associated with the severity and onset of preeclampsia. Cytokine 2012; 60(3): 856–860. 35. Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obst Gynecol 2013; 209(6), 544.e1–544.e12. 36. Kucukgoz Gulec U, Ozgunen FT, Buyukkurt S, Guzel AB, Urunsak IF, Demir SC, et al. Comparison of clinical and laboratory findings in early- and late-onset preeclampsia. J Maternal-Fetal Neonatal Med 2013; 26(12): 1228–1233. 37. Madazli R, Yuksel MA, Imamoglu M, Tuten A, Oncul M, Aydin B, et al. Comparison of clinical and perinatal outcomes in early- and lateonset preeclampsia. Arch Gynecol Obstet 2014; 290(1): 53–57. 38. Stubert J, Ullmann S, Dieterich M, Diedrich D, Reimer T. Clinical differences between early- and late-onset severe preeclampsia and analysis of predictors for perinatal outcome. J Perinat Med 2014; 42(5): 617–627. 39. Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv 2011; 66(8): 497–506. 40. Mtali YS, Lyimo MA, Luzzatto L, Massawe SN. Hypertensive disorders of pregnancy are associated with an inflammatory state: evidence from hematological findings and cytokine levels. BMC Preg Childbirth 2019; 19(1): 237. 41. Parikh NI, Laria B, Nah G, Singhal M, Vittinghoff E, Vieten C, et al. Cardiovascular disease-related pregnancy complications are associated with increased maternal levels and trajectories of cardiovascular disease biomarkers during and after pregnancy. J Womens Health (Larchmt) 2020; 29(10): 1283–1291. 42. Zhang JY, Cao XX, Wen HX, Zhang HY. Correlation analysis of levels of inflammatory cytokines and nitric oxide in peripheral blood with urine proteins and renal function in patients with gestational hypertension. Exp Ther Med 2019; 17(1): 657–662. 43. Friis CM, Paasche Roland MC, Godang K, Ueland T, Tanbo T, Bollerslev J, et al. Adiposity-related inflammation: effects of pregnancy. Obesity (Silver Spring). 2013; 21(1): E124–130. 44. Farah N, Hogan AE, O’Connor N, Kennelly MM, O’Shea D, Turner MJ. Correlation between maternal inflammatory markers and fetomaternal adiposity. Cytokine 2012; 60(1): 96–99. 45. Jamil A, Rashid A, Naveed A, Asim M. Effect of smoking on interleukin-6 and correlation between IL-6 and serum amyloid a-low density lipoprotein in smokers. J Postgrad Med Inst 2017; 31: 336–338. 46. Sunyer J, Forastiere F, Pekkanen J, Plana E, Kolz M, Pistelli R, et al. AIRGENE Study Group. Interaction between smoking and the interleukin-6 gene affects systemic levels of inflammatory biomarkers. Nicotine Tob Res 2009; 11(11): 1347–1353. 47. Dewachter L, Dewachter C. Inflammation in right ventricular failure: does it matter? Front Physiol 2018; 9: 1056. 48. Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 2017; 69: 236–243. 49. Cunnigham FG, Leveno KJ, Bloom SL, Dashe JS, Hoffman BL, Casey BM, et al. Williams Obstetrics. 24th edn. New York: McGraw-Hill Education, 2014. 50. Ding L, Bai C, Liu Y. Interleukin-6 contributes to myocardial damage in pregnant rats with reduced uterine perfusion pressure. Braz J Med Biol Res 2018; 51(8): e6921. 51. Pauli N, Puchałowicz K, Kuligowska A, Krzystolik A, Dziedziejko V, Safranow, et al. Associations between IL-6 and echo-parameters in patients with early onset coronary artery disease. Diagnostics (Basel)

RkJQdWJsaXNoZXIy NDIzNzc=