Cardiovascular Journal of Africa: Vol 33 No 5 (SEPTEMBER/OCTOBER 2022)

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 33, No 5, September/October 2022 AFRICA 233 References 1. Cai Y, Xie KL, Wu HL, et al. Functional suppression of Epiregulin impairs angiogenesis and aggravates left ventricular re-modelling by disrupting the extracellular‐signal‐regulated kinase1/2 signaling pathway in rats after acute myocardial infarction. J Cell Physiol 2019; 234: 18653–18665. 2. Yuan X, Pan J, Wen L, et al. MiR-590-3p regulates proliferation, migration and collagen synthesis of cardiac fibroblast by targeting ZEB1. J Cell Mol Med 2020; 24: 227–237. 3. Shu L, Zhang W, Huang C, et al. LncRNA ANRIL protects H9c2 cells against hypoxia-induced injury through targeting the miR-7-5p/SIRT1 axis. J Cell Physiol 2020; 235: 1175–1183. 4. Gong X, Zhu Y, Chang H, et al. Long noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction via targeting miR-144-3p. Biosci Rep 2019; 39: BSR20191103. 5. Wang L, Jiang P, He Y, et al. A novel mechanism of Smads/miR-675/ TGFβR1 axis modulating the proliferation and re-modelling of mouse cardiac fibroblasts. J Cell Physiol 2019; 234: 20275–20285. 6. Van Rooij E, Olson EN. Searching for miracles in cardiac fibrosis. Circ Res 2009; 104: 138–140. 7. Furtado MB, Nim HT, Boyd SE, et al. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 2016; 143: 387–397. 8. Itoh A, Nonaka Y, Ogawa T, et al. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins. Biosci Biotechnol Biochem 2017; 8: 2098–2104. 9. Matsushima N, Takatsuka S, Miyashita H, et al. Leucine rich repeat proteins: sequences, mutations, structures and diseases. Protein Pept Lett 2019; 26: 108–131. 10. Beetz N, Rommel C, Schnick T, et al. Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload. J Mol Cell Cardiol 2016; 101: 145–155. 11. Chen SW, Tung YC, Jung SM, et al. Lumican-null mice are susceptible to aging and isoproterenol-induced myocardial fibrosis. Biochem Biophys Res Commun 2017; 482: 1304–1311. 12. Melleby AO, Strand ME, Romaine A, et al. The heparan sulfate proteoglycan glypican-6 is upregulated in the failing heart, and regulates cardiomyocyte growth through ERK1/2 signaling. PLos One 2016; 11: e0165079. 13. Bengtsson E, Neame PJ, Heinegård D, et al. The primary structure of a basic leucine-rich repeat protein, PRELP, foundin connective tissues. J Biol Chem 1995; 270: 25639–25644. 14. Barallobre-Barreiro J, Didangelos A, Schoendube FA, et al. Proteomics analysis of cardiac extracellular matrix re modelling in a porcine model of ischemia/reperfusion injury. Circulation 2012; 125: 789–802. 15. Duan J, Xu H, Ma S, et al. Cre-mediated targeted gene activation in the middle silk glands of transgenic silkworms (Bombyx mori). Transgenic Res 2013; 3: 607–619. 16. Hahn JY, Cho HJ, Bae JW, et al. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem 2006; 41: 30979–30989. 17. Jones SE, Jomary C. Secreted frizzled-related proteins: searching for relationships and patterns. Bioessays 2002; 9: 811–820. 18. Li H, Cui Y, Luan J, et al. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway. Biochem Biophys Res Commun 2016; 470: 558–562. 19. Pillai VS, Kundargi RR, Edathadathil F, et al. Identfication of prolargin expression in articular cartilage and its significance in rheumatoid arthritis pathology. Int J Biol Macromol 2018; 110: 558–566. 20. Fernández-Puente P, González-Rodríguez L, Calamia V, et al. Analysis of endogenous peptides released from osteoarthritic cartilage unravels novel pathogenic markers. Mol Cell Proteomics 2019; 18: 2018–2028. 21. Lal H, Ahmad F, Zhou J, et al. Cardiac fibroblast glycogen synthase kinase-3b regulates ventricular re-modelling and dysfunction in ischemic heart. Circulation 2014; 130: 419–430. 22. Hara T, Yoshida E, Shinkai Y, et al. Biglycan intensifies ALK5-Smad2/3 signaling by TGF-β1 and downregulates syndecan-4 in cultured vascular endothelial cells. J Cell Biochem 2017; 118: 1087–1096. 23. Jazi MF, Biglari A, Mazloomzadeh S, et al. Recombinant fibromodulin has therapeutic effects on diabetic nephropathy by down-regulating transforming growth factor-β1 in streptozotocin-induced diabetic rat model. Iran J Basic Med Sci 2016; 19: 265–271. 24. Bengtsson E, Lindblom K, Tillgren V, et al. The leucine-rich repeat protein PRELP binds fibroblast cell-surface proteoglycans and enhances focal adhesion formation. Biochem J 2016; 473: 1153–1164. 25. Liu GH, David E, Martin E, et al. PRELP enhances host innate immunity against the respiratory tract pathogen Moraxella catarrhalis. J Immunol 2017; 198: 2330–2340. 26. Bengtsson E, Aspberg A, Heinegard D, et al. The amino-terminal part of PRELP binds to heparin and heparan sulfate. J Biol Chem 2000; 275: 40695–40702. 27. Sumida T, Naito AT. Complement C1q-induced activation of β-catenin signaling causes hypertensive arterial re-modelling. Nat Commun 2005; 26: 6241. 28. Chen L, Wu Q, Guo F, et al. Expression of dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration. J Cell Mol Med 2004; 8: 257–264. 29. Popova AP, Bentley JK, Anyanwu AC, et al. Glycogen synthase kinase3β/β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation. Am J Physiol Lung Cell Mol Physiol 2012; 303: L439–L448. 30. Jeong MH, Kim HJ, Pyun JH, et al. Cdon deficiency causes cardiac remodeling through hyperactivation of wnt/β-catenin signaling. Proc Natl Acad Sci USA 2017; 114: E1345–E1354. 31. Lin H, Angeli M, Chung KJ, et al. sFRP2 activates wnt/β-catenin signaling in cardiac fibroblasts: differential roles in cell growth, energy metabolism, and extracellular matrix remodeling. Am J Physiol Cell Physiol 2016; 311: C710–C719.

RkJQdWJsaXNoZXIy NDIzNzc=