Cardiovascular Journal of Africa: Vol 35 No 1 (JANUARY/APRIL 2024)

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 35, No 1, January – April 2024 60 AFRICA Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111(5): 649. 19. Govender N, Naicker T, Moodley J. Maternal imbalance between proangiogenic and anti-angiogenic factors in HIV-infected women with pre-eclampsia. Cardiovasc J Afr 2013; 24(5): 174–179. 20. He B, Yang X, Li Y, Huang D, Xu X, Yang W, et al. TLR9 (toll-like receptor 9) agonist suppresses angiogenesis by differentially regulating VEGFA (vascular endothelial growth factor a) and sFLT1 (soluble vascular endothelial growth factor receptor 1) in preeclampsia. Hypertension 2018; 71(4): 671–680. 21. Redman C, Sargent I. Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Repro Immunol 2007; 76(1–2): 61–67. 22. Redman C, Tannetta D, Dragovic R, Gardiner C, Southcombe J, Collett G, et al. Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta 2012; 33: S48–S54. 23. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol 2015; 213(4): S173–S181. 24. Zhang L, Valencia CA, Dong B, Chen M, Guan P-J, Pan L. Transfer of microRNAs by extracellular membrane microvesicles: a nascent crosstalk model in tumor pathogenesis, especially tumor cell-microenvironment interactions. J Hematol Oncol 2015; 8(1): 1–8. 25. Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol 2006; 176(3): 1534–1542. 26. Sabapatha A, Gercel‐Taylor C, Taylor DD. Specific isolation of placenta‐derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Repro Immunol 2006; 56(5‐6): 345–355. 27. Ermini L, Ausman J, Melland-Smith M, Yeganeh B, Rolfo A, Litvack ML, et al. A single sphingomyelin species promotes exosomal release of endoglin into the maternal circulation in preeclampsia. Sci Rep 2017; 7(1): 1–16. 28. Acácio GL. Uterine artery Doppler patterns in abdominal pregnancy. Ultrasound Obstet Gynecol 2002; 20(2): 194–196. 29. Binder J, Monaghan C, Thilaganathan B, Carta S, Khalil A. Worsening of the uterine artery Doppler is associated with the development of hypertensive disorders of pregnancy. Geburtshilfe und Frauenheilkunde 2018; 78(05): 02. 30. Burton G, Nelson D. The exceptions that challenge the rules. Placenta 2011; 10(32): 715. 31. Leslie K, Thilaganathan B. A perfusion confusion? Placenta 2012; 3(33): 230. 32. Kalafat E, Laoreti A, Khalil A, Da Silva Costa F, Thilaganathan B. Ophthalmic artery Doppler for prediction of pre‐eclampsia: systematic review and meta‐analysis. Ultrasound Obstet Gynecol 2018; 51(6): 731–737. 33. Osman MW, Nath M, Breslin E, Khalil A, Webb DR, Robinson TG, et al. Association between arterial stiffness and wave reflection with subsequent development of placental-mediated diseases during pregnancy: findings of a systematic review and meta-analysis. J Hypertens 2018; 36(5): 1005–1014. 34. Foo FL, Mahendru AA, Masini G, Fraser A, Cacciatore S, MacIntyre DA, et al. Association between prepregnancy cardiovascular function and subsequent preeclampsia or fetal growth restriction. Hypertension 2018; 72(2): 442–450. 35. Ray JG. Premature cardiac disease and death after preterm preeclampsia in women whose infant was small for gestational age – Reply. J Am Med Assoc Cardiol 2018; 3(7): 665. 36. Rich-Edwards JW, Fraser A, Lawlor DA, Catov JM. Pregnancy characteristics and women’s future cardiovascular health: an underused opportunity to improve women’s health? Epidemiol Rev 2014; 36(1): 57–70. 37. Romundstad PlR, Magnussen EB, Smith GD, Vatten LJ. Hypertension in pregnancy and later cardiovascular risk: common antecedents? Circulation 2010; 122(6): 579–584. 38. Ray JG, Park AL, Fell DB. Mortality in infants affected by preterm birth and severe small-for-gestational age birth weight. Pediatrics 2017; 140(6). 39. Aryan L, Medzikovic L, Umar S, Eghbali M. Pregnancy-associated cardiac dysfunction and the regulatory role of microRNAs. Biol Sex Diff 2020; 11: 1–17. 40. Liu LX, Arany Z. Maternal cardiac metabolism in pregnancy. Cardiovasc Res 2014; 101(4): 545–553. 41. Sanghavi M, Rutherford JD. Cardiovascular physiology of pregnancy. Circulation 2014; 130(12): 1003–1008. 42. Hall ME, George EM, Granger JP. The heart during pregnancy. Revista Española de Cardiología 2011; 64(11): 1045–1050. 43. Soma-Pillay P, Catherine N-P, Tolppanen H, Mebazaa A, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr 2016; 27(2): 89. 44. Chung E, Leinwand LA. Pregnancy as a cardiac stress model. Cardiovasc Res 2014; 101(4): 561–570. 45. Umar S, Nadadur R, Iorga A, Amjedi M, Matori H, Eghbali M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J Appl Physiol 2012; 113(8): 1253–1259. 46. Liu LX, Rowe GC, Yang S, Li J, Damilano F, Chan MC, et al. PDK4 inhibits cardiac pyruvate oxidation in late pregnancy. Circ Res 2017; 121(12): 1370–1378. 47. Redondo-Angulo I, Mas-Stachurska A, Sitges M, Tinahones FJ, Giralt M, Villarroya F, et al. Fgf21 is required for cardiac remodeling in pregnancy. Cardiovasc Res 2017; 113(13): 1574–1584. 48. Maack C, Lehrke M, Backs J, Heinzel FR, Hulot J-S, Marx N, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association – European Society of Cardiology. Eur Heart J 2018; 39(48): 4243–4254. 49. Rimbaud S, Sanchez H, Garnier A, Fortin D, Bigard X, Veksler V, et al. Stimulus specific changes of energy metabolism in hypertrophied heart. J Molec Cell Cardiol 2009; 46(6): 952–959. 50. Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 2012; 125(23): 2844–2853. 51. Chung E, Yeung F, Leinwand LA. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation. J Appl Physiol 2012; 112(9): 1564–1575. 52. Haghikia A, Stapel B, Hoch M, Hilfiker-Kleiner D. STAT3 and cardiac remodeling. Heart Fail Rev 2011; 16(1): 35–47. 53. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90(4): 1507–1546. 54. Mogos MF, Piano MR, McFarlin BL, Salemi JL, Liese KL, Briller JE. Heart failure in pregnant women: a concern across the pregnancy continuum. Circ Heart Fail 2018; 11(1): e004005. 55. Graves CR, Davis SF. Cardiovascular complications in pregnancy: it is time for action. Circulation 2018; 137(12): 1213–1215. 56. Appiah D, Schreiner PJ, Gunderson EP, Konety SH, Jacobs DR,

RkJQdWJsaXNoZXIy NDIzNzc=