Cardiovascular Journal of Africa: Vol 35 No 1 (JANUARY/APRIL 2024)

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 35, No 1, January – April 2024 AFRICA 61 Nwabuo CC, et al. Association of gestational diabetes mellitus with left ventricular structure and function: the CARDIA study. Diabetes Care 2016; 39(3): 400–407. 57. Anthony J, Sliwa K. Decompensated heart failure in pregnancy. Card Fail Rev 2016; 2(1): 20–26. 58. Bhorat I, Naidoo D, Moodley J. Maternal cardiac haemodynamics in severe pre-eclampsia complicated by acute pulmonary oedema: A review. J Maternal-Fetal Neonatal Med 2017; 30(23): 2769–2777. 59. Zuspan FP. Adrenal gland and sympathetic nervous system response in eclampsia. Am J Obstet Gynecol 1972; 114(3): 304–313. 60. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Repro Immun 2013; 97(1): 51–61. 61. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215–233. 62. Jairajpuri DS, Malalla ZH, Mahmood N, Almawi WY. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene 2017; 627: 543–548. 63. Guan Y, Song X, Sun W, Wang Y, Liu B. Effect of hypoxia-induced microrna-210 expression on cardiovascular disease and the underlying mechanism. Oxidat Med Cell Long 2019; 2019. 64. Mutharasan RK, Nagpal V, Ichikawa Y, Ardehali H. microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt-and p53-dependent pathways and exerts cytoprotective effects. Am J Physiol Heart Circ Physiol 2011; (4): H1519–H1530. 65. Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A, et al. MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Molec Med 2017; 95(12): 1369–1385. 66. Wang N, Chen C, Yang D, Liao Q, Luo H, Wang X, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta 2017; 1863(8): 2085–2092. 67. Li H, Ge Q, Guo L, Lu Z. Maternal plasma miRNAs expression in preeclamptic pregnancies. BioMed Res Int 2013; 2013. 68. Slusarz A, Pulakat L. The two faces of miR-29. J Cardiovasc Med 2015; 16(7): 480. 69. Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa Martins P, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2014; 63(9): 920–927. 70. Li M, Wang N, Zhang J, He H-P, Gong H-Q, Zhang R, et al. MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes. Gene 2016; 585(1): 44–50. 71. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456(7224): 980–984. 72. Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, et al. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem 2017; 42(6): 2207–2219. 73. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/ reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 2010; 87(3): 431–439. 74. Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 2013; 128(13): 1420–1432. 75. He W, Huang H, Xie Q, Wang Z, Fan Y, Kong B, et al. MiR-155 knockout in fibroblasts improves cardiac remodeling by targeting tumor protein p53-inducible nuclear protein 1. J Cardiovasc Pharmacol Ther 2016; 21(4): 423–435. 76. Akehurst C, Small HY, Sharafetdinova L, Forrest R, Beattie W, Brown CE, et al. Differential expression of microRNA-206 and its target genes in preeclampsia. J Hypertens 2015; 33(10): 2068. 77. Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J, et al. miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res 2015; 117(10): 891–904. 78. He Q, Wang F, Honda T, James J, Li J, Redington A. Loss of miR-144 signaling interrupts extracellular matrix remodeling after myocardial infarction leading to worsened cardiac function. Sci Rep 2018; 8(1): 1–11. 79. Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 2012; 94(2): 379–390. 80. Sandrim VC, Eleuterio N, Pilan E, Tanus-Santos JE, Fernandes K, Cavalli R. Plasma levels of increased miR-195-5p correlates with the sFLT-1 levels in preeclampsia. Hypertens Pregnancy 2016; 35(2): 150–158. 81. Wang L, Qin D, Shi H, Zhang Y, Li H, Han Q. MiR-195-5p promotes cardiomyocyte hypertrophy by targeting MFN2 and FBXW7. BioMed Res Int. 2019; 2019. 82. Ura B, Feriotto G, Monasta L, Bilel S, Zweyer M, Celeghini C. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol 2014; 53(2): 232–234. 83. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Develop Cell 2008; 15(2): 261–271. 84. Yang H-H, Chen Y, Gao C-Y, Cui Z-T, Yao J-M. Protective effects of microRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. Cell Physiol Biochem 2017; 42(2): 506–518. 85. Xiao J, Zhu X, He B, Zhang Y, Kang B, Wang Z, et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci 2011; 18(1): 1–6. 86. Tijsen AJ, Van Der Made I, van den Hoogenhof MM, Wijnen WJ, van Deel ED, De Groot NE, et al. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res 2014; 104(1): 61–71. 87. Cui Y, Wang W, Dong N, Lou J, Srinivasan DK, Cheng W, et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature 2012; 484(7393): 246–250. 88. Gu Y, Thompson D, Xu J, Lewis DF, Morgan JA, Cooper DB, et al. Aberrant pro-atrial natriuretic peptide/corin/natriuretic peptide receptor signaling is present in maternal vascular endothelium in preeclampsia. Pregnancy Hypertens 2018; 11: 1–6. 89. Yan W, Sheng N, Seto M, Morser J, Wu Q. Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem 1999; 274(21): 14926–14935. 90. Armaly Z, Assady S, Abassi Z. Corin: a new player in the regulation of salt–water balance and blood pressure. Curr Opin Nephrol Hypertens 2013; 22(6): 713–722. 91. Baird RC, Li S, Wang H, Prasad SVN, Majdalany D, Perni U, et al. Pregnancy-associated cardiac hypertrophy in corin-deficient mice: observations in a transgenic model of preeclampsia. Can J Cardiol 2019; 35(1): 68–76. 92. Ducat A, Doridot L, Calicchio R, Méhats C, Vilotte J-L, Castille J, et al. Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Sci Rep 2016; 6(1): 1–9.

RkJQdWJsaXNoZXIy NDIzNzc=