CARDIOVASCULAR JOURNAL OF AFRICA • Volume 30, No 3, May/June 2019
178
AFRICA
25% of AM-treated patients are forced to discontinue treatment
due to its side effects.
As an alternative, short-burst therapy with oral AM appears
to significantly improve six-week and six-month sinus rhythm
maintenance rates following cardioversion, without exposing
patients to the adverse effects of long-term AM therapy.
60
In patients regaining sinus rhythm after the first episode of
persistent AF, three months of AM therapy after reversion is a
reasonable option for rhythm control, with significantly lower
recurrences after 18 months.
61
The superior efficacy of this drug is partially overshadowed
by the adverse effects that occur in 15 to 50% of cases, from
the first year of treatment to prolonged treatment. Cardiac,
pulmonary, thyroid and hepatic side effects are well known. For
safe use, the following are recommended: semi-annual thyroid
function and transaminase tests, an annual chest X-ray, as well
as an annual ECG in all AM patients.
62
Conclusions
Once installed, AF can induce irreversible electrophysiological,
histopathological or immunological changes. With the
pharmacological advances of the last decades, despite its
adverse reactions, AM is one of the most commonly used anti-
arrhythmic agents. It remains the most effective medication for
the maintenance of sinus rhythm in patients with AF and the
most used drug for pharmacological cardioversion. This is due
to its multivalent profile, with a complex electrophysiological
activity combined with an anti-inflammatory and vasodilatory
effect.
References
1.
Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S. Epidemiology
of atrial fibrillation: European perspective.
Clin Epidemiol
2014;
6
:
213–220. doi: 10.2147/CLEP.S47385.
2.
Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Moretz
K,
et al
. Catheter ablation versus antiarrhythmic drug therapy for atrial
fibrillation (CABANA) trial: study rationale and design.
Am Heart J
2018;
199
: 192–199. doi: 10.1016/j.ahj.2018.02.015.
3.
Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L,
Jordaens L,
et al
. Catheter ablation for atrial fibrillation with heart fail-
ure.
N Engl J Med
2018;
378
: 417–427. doi: 10.1056/NEJMoa1707855.
4.
Rosenbaum MB, Chiale PA, Halpern MS, Nau GJ, Przybylski J, Levi
RJ,
et al
. Clinical efficacy of amiodarone as an antiarrhythmic agent.
Am J Cardiol
1976;
38
(7): 934–944. PMID:793369.
5.
Narayan SM, Franz MR, Clopton P, Pruvot EJ, Krummen DE.
Repolarization alternans reveals vulnerability to human atri-
al fibrillation.
Circulation
2011;
123
(25): 2922–2930. doi: 10.1161/
CIRCULATIONAHA.110.977827.
6.
Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kühlkamp V.
Ionic mechanisms of electrical remodeling in human atrial fibrillation.
Cardiovasc Res
1999;
44
(1): 121–131. PMID: 10615396.
7.
Sato R, Koumi SI, Singer DH, Hisatome I, Jia H, Eager S,
et al
.
Amiodarone blocks the inward rectifier potassium channel in isolated
guinea pig ventricular cells.
J Pharmacol Exp Ther
1994;
269
(3): 1213–
1219. PMID: 8014865.
8.
Schmidt C, Wiedmann F, Kallenberger SM, Ratte A, Schulte JS, Scholz
B,
et al
. Stretch-activated two-pore-domain (K2P) potassium channels
in the heart: Focus on atrial fibrillation and heart failure.
Prog Biophys
Mol Biol
2017;
130
: 233–243. doi: 10.1016/j.pbiomolbio.2017.05.004.
9.
Gierten J, Ficker E, Bloehs R, Schweizer PA, Zitron E, Scholz E,
et
al
. The human cardiac K 2P 3.1 (TASK-1) potassium leak channel is
a molecular target for the class III antiarrhythmic drug amiodarone.
Naunyn Schmiedebergs Arch Pharmacol
2010;
381
(3): 261–270. doi:
10.1007/s00210-009-0454-4.
10. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling
underlying action potential changes in a canine model of atrial fibrilla-
tion.
Circ Res
1997;
81
: 512–525. PMID: 9314832.
11. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S,
Lande G,
et al
. Human atrial ion channel and transporter subunit
gene-expression remodeling associated with valvular heart disease
and atrial fibrillation.
Circulation
2005;
112
: 471–481. doi:10.1161/
CIRCULATIONAHA.104.506857.
12. Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K,
et
al
. Altered Na(+) currents in atrial fibrillation effects of ranolazine on
arrhythmias and contractility in human atrial myocardium.
J Am Coll
Cardiol
2010;
55
(21): 2330–2342. doi: 10.1016/j.jacc.2009.12.055.
13. Suzuki T, Morishima M, Kato S, Takemoto Y, Takanari H, Ueda N,
et
al
. Atrial selectivity in sodium channel block by amiodarone.
Biophys J
2013;
104
(2): 133a. doi
:https://doi.org/10.1016/j.bpj.2012.11.760.14. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B,
et al
.
2016 ESC guidelines for the management of atrial fibrillation developed
in collaboration with EACTS.
Eur Heart J
2016;
37
(38): 2893–2962.
doi:10.1093/ejcts/ezw313.
15. Kodama I, Kamiya K, Toyama J. Celualar electropharmacology of
amiodarone.
Cardiovasc Res
1997; 3513–3529. PMID: 9302343.
16. Dinanian S, Boixel C, Juin C, Hulot JS, Coulombe A, Rücker-Martin
C,
et al
. Down-regulation of the calcium current in human right atrial
myocytes from patients in sinus rhythm but with a high risk of atrial
fibrillation.
Eur Heart J
2008;
29
: 1190–1197. doi: 10.1093/eurheartj/
ehn140.
17. Greiser M, Leiderer WJ, Schotten U. Alterations of atrial Ca handling
as cause and consequence of atrial fibrillation.
Cardiovasc Res
2011;
89
(4): 722–773. doi: 10.1093/cvr/cvq389.
18. Nattel S, Harada M. Atrial remodeling and atrial fibrillation.recent
advances and translational perspectives.
J Am Coll Cardiol
2014;
63
:
2335–2345. doi: 10.1016/j.jacc.2014.02.555.
19. Wagner JA, Weisman HF, Levine JH, Snowman AM, Snyder SH.
Differential effects of amiodarone and desethylamiodarone on calcium
antagonist receptors.
J Cardiovasc Pharmac
1990;
15
(3): 501–507.
PMID:1691376.
20. Luo B, Yan Y, Zeng Z, Zhang Z, Liu H, Liu H,
et al
Connexin 43
reduces susceptibility to sympathetic atrial fibrillation.
Int J Molec Med
2018;
42
(2): 1125–1133. doi: 10.3892/ijmm.2018.3648.
21. Yan J, Kong W, Zhang Q, Beyer EC, Walcott G, Fast VG,
et al
. c-Jun
N-terminal kinase activation contributes to reduced connexin43 and
development of atrial arrhythmias.
Cardiovasc Res
2012;
97
(3): 589–597.
doi: 10.1093/cvr/cvs366.
22. Yan J, Thomson JK, Zhao W, Wu X, Gao X, DeMarco D,
et al
. The
stress kinase JNK regulates gap junction Cx43 gene expression and
promotes atrial fibrillation in the aged heart.
J Molec Cell Cardiol
2018;
114
: 105–115. doi: 10.1016/j.yjmcc.2017.11.006.
23. De Vuyst E, Boengler K, Antoons G, Sipido KR, Schulz R, Leybaert
L. Pharmacological modulation of connexin-formed channels in cardi-
ac pathophysiology
. Br J Pharmacol
2011;
163
(3): 469–483. doi:
10.1111/j.1476-5381.2011.01244.x.
24. Adesse D, Azzam EM, Meirelles Mde N, Urbina JA, Garzoni LR.
Amiodarone inhibits Trypanosoma cruzi infection and promotes cardi-
ac cell recovery with gap junction and cytoskeleton reassembly
in vitro.