Background Image
Table of Contents Table of Contents
Previous Page  50 / 68 Next Page
Information
Show Menu
Previous Page 50 / 68 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 30, No 3, May/June 2019

178

AFRICA

25% of AM-treated patients are forced to discontinue treatment

due to its side effects.

As an alternative, short-burst therapy with oral AM appears

to significantly improve six-week and six-month sinus rhythm

maintenance rates following cardioversion, without exposing

patients to the adverse effects of long-term AM therapy.

60

In patients regaining sinus rhythm after the first episode of

persistent AF, three months of AM therapy after reversion is a

reasonable option for rhythm control, with significantly lower

recurrences after 18 months.

61

The superior efficacy of this drug is partially overshadowed

by the adverse effects that occur in 15 to 50% of cases, from

the first year of treatment to prolonged treatment. Cardiac,

pulmonary, thyroid and hepatic side effects are well known. For

safe use, the following are recommended: semi-annual thyroid

function and transaminase tests, an annual chest X-ray, as well

as an annual ECG in all AM patients.

62

Conclusions

Once installed, AF can induce irreversible electrophysiological,

histopathological or immunological changes. With the

pharmacological advances of the last decades, despite its

adverse reactions, AM is one of the most commonly used anti-

arrhythmic agents. It remains the most effective medication for

the maintenance of sinus rhythm in patients with AF and the

most used drug for pharmacological cardioversion. This is due

to its multivalent profile, with a complex electrophysiological

activity combined with an anti-inflammatory and vasodilatory

effect.

References

1.

Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S. Epidemiology

of atrial fibrillation: European perspective.

Clin Epidemiol

2014;

6

:

213–220. doi: 10.2147/CLEP.S47385.

2.

Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Moretz

K,

et al

. Catheter ablation versus antiarrhythmic drug therapy for atrial

fibrillation (CABANA) trial: study rationale and design.

Am Heart J

2018;

199

: 192–199. doi: 10.1016/j.ahj.2018.02.015.

3.

Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L,

Jordaens L,

et al

. Catheter ablation for atrial fibrillation with heart fail-

ure.

N Engl J Med

2018;

378

: 417–427. doi: 10.1056/NEJMoa1707855.

4.

Rosenbaum MB, Chiale PA, Halpern MS, Nau GJ, Przybylski J, Levi

RJ,

et al

. Clinical efficacy of amiodarone as an antiarrhythmic agent.

Am J Cardiol

1976;

38

(7): 934–944. PMID:793369.

5.

Narayan SM, Franz MR, Clopton P, Pruvot EJ, Krummen DE.

Repolarization alternans reveals vulnerability to human atri-

al fibrillation.

Circulation

2011;

123

(25): 2922–2930. doi: 10.1161/

CIRCULATIONAHA.110.977827.

6.

Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kühlkamp V.

Ionic mechanisms of electrical remodeling in human atrial fibrillation.

Cardiovasc Res

1999;

44

(1): 121–131. PMID: 10615396.

7.

Sato R, Koumi SI, Singer DH, Hisatome I, Jia H, Eager S,

et al

.

Amiodarone blocks the inward rectifier potassium channel in isolated

guinea pig ventricular cells.

J Pharmacol Exp Ther

1994;

269

(3): 1213–

1219. PMID: 8014865.

8.

Schmidt C, Wiedmann F, Kallenberger SM, Ratte A, Schulte JS, Scholz

B,

et al

. Stretch-activated two-pore-domain (K2P) potassium channels

in the heart: Focus on atrial fibrillation and heart failure.

Prog Biophys

Mol Biol

2017;

130

: 233–243. doi: 10.1016/j.pbiomolbio.2017.05.004.

9.

Gierten J, Ficker E, Bloehs R, Schweizer PA, Zitron E, Scholz E,

et

al

. The human cardiac K 2P 3.1 (TASK-1) potassium leak channel is

a molecular target for the class III antiarrhythmic drug amiodarone.

Naunyn Schmiedebergs Arch Pharmacol

2010;

381

(3): 261–270. doi:

10.1007/s00210-009-0454-4.

10. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling

underlying action potential changes in a canine model of atrial fibrilla-

tion.

Circ Res

1997;

81

: 512–525. PMID: 9314832.

11. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S,

Lande G,

et al

. Human atrial ion channel and transporter subunit

gene-expression remodeling associated with valvular heart disease

and atrial fibrillation.

Circulation

2005;

112

: 471–481. doi:10.1161/

CIRCULATIONAHA.104.506857.

12. Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K,

et

al

. Altered Na(+) currents in atrial fibrillation effects of ranolazine on

arrhythmias and contractility in human atrial myocardium.

J Am Coll

Cardiol

2010;

55

(21): 2330–2342. doi: 10.1016/j.jacc.2009.12.055.

13. Suzuki T, Morishima M, Kato S, Takemoto Y, Takanari H, Ueda N,

et

al

. Atrial selectivity in sodium channel block by amiodarone.

Biophys J

2013;

104

(2): 133a. doi

:https://doi.org/10.1016/j.bpj.2012.11.760.

14. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B,

et al

.

2016 ESC guidelines for the management of atrial fibrillation developed

in collaboration with EACTS.

Eur Heart J

2016;

37

(38): 2893–2962.

doi:10.1093/ejcts/ezw313.

15. Kodama I, Kamiya K, Toyama J. Celualar electropharmacology of

amiodarone.

Cardiovasc Res

1997; 3513–3529. PMID: 9302343.

16. Dinanian S, Boixel C, Juin C, Hulot JS, Coulombe A, Rücker-Martin

C,

et al

. Down-regulation of the calcium current in human right atrial

myocytes from patients in sinus rhythm but with a high risk of atrial

fibrillation.

Eur Heart J

2008;

29

: 1190–1197. doi: 10.1093/eurheartj/

ehn140.

17. Greiser M, Leiderer WJ, Schotten U. Alterations of atrial Ca handling

as cause and consequence of atrial fibrillation.

Cardiovasc Res

2011;

89

(4): 722–773. doi: 10.1093/cvr/cvq389.

18. Nattel S, Harada M. Atrial remodeling and atrial fibrillation.recent

advances and translational perspectives.

J Am Coll Cardiol

2014;

63

:

2335–2345. doi: 10.1016/j.jacc.2014.02.555.

19. Wagner JA, Weisman HF, Levine JH, Snowman AM, Snyder SH.

Differential effects of amiodarone and desethylamiodarone on calcium

antagonist receptors.

J Cardiovasc Pharmac

1990;

15

(3): 501–507.

PMID:1691376.

20. Luo B, Yan Y, Zeng Z, Zhang Z, Liu H, Liu H,

et al

Connexin 43

reduces susceptibility to sympathetic atrial fibrillation.

Int J Molec Med

2018;

42

(2): 1125–1133. doi: 10.3892/ijmm.2018.3648.

21. Yan J, Kong W, Zhang Q, Beyer EC, Walcott G, Fast VG,

et al

. c-Jun

N-terminal kinase activation contributes to reduced connexin43 and

development of atrial arrhythmias.

Cardiovasc Res

2012;

97

(3): 589–597.

doi: 10.1093/cvr/cvs366.

22. Yan J, Thomson JK, Zhao W, Wu X, Gao X, DeMarco D,

et al

. The

stress kinase JNK regulates gap junction Cx43 gene expression and

promotes atrial fibrillation in the aged heart.

J Molec Cell Cardiol

2018;

114

: 105–115. doi: 10.1016/j.yjmcc.2017.11.006.

23. De Vuyst E, Boengler K, Antoons G, Sipido KR, Schulz R, Leybaert

L. Pharmacological modulation of connexin-formed channels in cardi-

ac pathophysiology

. Br J Pharmacol

2011;

163

(3): 469–483. doi:

10.1111/j.1476-5381.2011.01244.x.

24. Adesse D, Azzam EM, Meirelles Mde N, Urbina JA, Garzoni LR.

Amiodarone inhibits Trypanosoma cruzi infection and promotes cardi-

ac cell recovery with gap junction and cytoskeleton reassembly

in vitro.