

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 5, September/October 2018
AFRICA
329
72. Pilz S, Horejsi R, Moller R, Almer G, Scharnagl H, Stojakovic T,
et
al.
Early atherosclerosis in obese juveniles is associated with low serum
levels of adiponectin.
J Clin Endocrinol Metab
2005;
90
: 4792–4796. doi:
10.1210/jc.2005-0167.
73. Svensson P, de Faire U, Niklasson U, Hansson LF, Ostergren J.
Plasma NT-proBNP concentration is related to ambulatory pulse pres-
sure in peripheral arterial disease.
Blood Press
2005;
14
: 99–106. doi:
10.1080/08037050510008931.
74. Jouni H, Rodeheffer RJ, Kullo IJ. Increased serum N-terminal pro-B-
type natriuretic peptide levels in patients with medial arterial calcifica-
tion and poorly compressible leg arteries.
Arterioscler Thromb Vasc Biol
2011;
31
: 197–202. doi: 10.1161/ATVBAHA.110.216770.
75. Fan J, Jouni H, Khaleghi M, Bailey KR, Kullo IJ. Serum N-terminal
pro-B-type natriuretic peptide levels are associated with functional
capacity in patients with peripheral arterial disease.
Angiology
2012;
63
:
435–442. doi: 10.1177/0003319711423095.
76. Mueller T, Dieplinger B, Poelz W, Endler G, Wagner OF, Haltmayer M.
Amino-terminal pro-B-type natriuretic peptide as predictor of mortality
in patients with symptomatic peripheral arterial disease: 5-year follow-
up data from the Linz Peripheral Arterial Disease Study.
Clin Chem
2009;
55
: 68–77. doi: 10.1373/clinchem.2008.108753.
77. Falcone C, Bozzini S, Guasti L, D’Angelo A, Capettini AC, Paganini
EM,
et al.
Soluble RAGE plasma levels in patients with coronary artery
disease and peripheral artery disease.
Sci World J
2013;
2013
: 584504.
doi: 10.1155/2013/584504.
78. Geroldi D, Falcone C, Emanuele E. Soluble receptor for advanced glyca-
tion end products: from disease marker to potential therapeutic target.
Curr Med Chem
2006;
13
: 1971–1978. doi: 10.2174/092986706777585013
79. Prasad K, Mishra M. Do Advanced glycation end products and its
receptor play a role in pathophysiology of hypertension?
Int J Angiol
2017;
26
: 1–11. doi: 10.1055/s-0037-1598183.
80. Agarwal I, Arnold A, Glazer NL, Barasch E, Djousse L, Fitzpatrick
AL,
et al
. Fibrosis-related biomarkers and large and small vessel disease:
the Cardiovascular Health Study.
Atherosclerosis
2015;
239
: 539–546.
doi: 10.1016/j.atherosclerosis.2015.02.020.
81. Ha DM, Carpenter LC, Koutakis P, Swanson SA, Zhu Z, Hanna M,
et al
. Transforming growth factor-beta 1 produced by vascular smooth
muscle cells predicts fibrosis in the gastrocnemius of patients with
peripheral artery disease.
J Transl Med
2016;
14
: 39. doi: 10.1186/
s12967-016-0790-3.
82. McDermott MM, Guralnik JM, Corsi A, Albay M, Macchi C,
Bandinelli S,
et al.
Patterns of inflammation associated with peripheral
arterial disease: the InCHIANTI study.
Am Heart J
2005;
150
: 276–281.
doi: 10.1016/j.ahj.2004.09.032.
83. Kikuchi R, Nakamura K, MacLauchlan S, Ngo DT, Shimizu I, Fuster
JJ,
et al
. An antiangiogenic isoform of VEGF-A contributes to impaired
vascularization in peripheral artery disease.
Nat Med
2014;
20
: 1464–
1471. doi: 10.1038/nm.3703.
84. Blann AD, Belgore FM, McCollum CN, Silverman S, Lip PL, Lip GY.
Vascular endothelial growth factor and its receptor, Flt-1, in the plasma
of patients with coronary or peripheral atherosclerosis, or Type II diabe-
tes.
Clin Sci
(Lond) 2002;
102
: 187–194. doi: 10.1042/cs1020187.
85. Makin AJ, Chung NA, Silverman SH, Lip GY. Vascular endothelial
growth factor and tissue factor in patients with established peripheral
artery disease: a link between angiogenesis and thrombogenesis?
Clin Sci
(Lond) 2003;
104
: 397–404. doi: 10.1042/CS20020182.
86. Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. Plasma
levels of soluble Tie2 and vascular endothelial growth factor distinguish
critical limb ischemia from intermittent claudication in patients with
peripheral arterial disease.
J Am Coll Cardiol
2008;
52
: 387–393. doi:
10.1016/j.jacc.2008.02.045.
87. Bover LC, Cardo-Vila M, Kuniyasu A, Sun J, Rangel R, Takeya M,
et al
. A previously unrecognized protein-protein interaction between
TWEAK and CD163: potential biological implications.
J Immunol
2007;
178
: 8183–8194. doi: 10.4049/jimmunol.178.12.8183.
88. Blanco-Colio LM, Martin-Ventura JL, Munoz-Garcia B, Moreno
JA, Meilhac O, Ortiz A,
et al.
TWEAK and Fn14. New players in the
pathogenesis of atherosclerosis.
Front Biosci
2007;
12
: 3648–3655. doi:
10.2741/2341.
89. Moreno JA, Dejouvencel T, Labreuche J, Smadja DM, Dussiot M,
Martin-Ventura JL,
et al
. Peripheral artery disease is associated with a
high CD163/TWEAK plasma ratio.
Arterioscler Thromb Vasc Biol
2010;
30
: 1253–1262. doi: 10.1161/ATVBAHA.110.203364.
90. Urbonaviciene G, Martin-Ventura JL, Lindholt JS, Urbonavicius S,
Moreno JA, Egido J,
et al
. Impact of soluble TWEAK and CD163/
TWEAK ratio on long-term cardiovascular mortality in patients with
peripheral arterial disease.
Atherosclerosis
2011;
219
: 892–899. doi:
10.1016/j.atherosclerosis.2011.09.016.
91. Smadja DM, d’Audigier C, Bieche I, Evrard S, Mauge L, Dias JV,
et al.
Thrombospondin-1 is a plasmatic marker of peripheral arterial
disease that modulates endothelial progenitor cell angiogenic proper-
ties.
Arterioscler Thromb Vasc Biol
2011;
31
: 551–559. doi: 10.1161/
ATVBAHA.110.220624.
92. Peter EA, Shen X, Shah SH, Pardue S, Glawe JD, Zhang WW,
et
al
. Plasma free H2S levels are elevated in patients with cardiovas-
cular disease.
J Am Heart Assoc
2013;
2
: e000387. doi: 10.1161/
JAHA.113.000387.
93. Hoier B, Walker M, Passos M, Walker PJ, Green A, Bangsbo J,
et al.
Angiogenic response to passive movement and active exercise in indi-
viduals with peripheral arterial disease.
J Appl Physiol
(1985) 2013;
115
:
1777–1787. doi: 10.1152/japplphysiol.00979.2013.
94. Martinez-Aguilar E, Gomez-Rodriguez V, Orbe J, Rodriguez JA,
Fernandez-Alonso L, Roncal C,
et al
. Matrix metalloproteinase 10 is
associated with disease severity and mortality in patients with periph-
eral arterial disease.
J Vasc Surg
2015;
61
: 428–435. doi: 10.1016/j.
jvs.2014.09.002.
95. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, Lin FY,
et al
.
Matrix metalloproteinase-9 is essential for ischemia-induced neovascu-
larization by modulating bone marrow-derived endothelial progenitor
cells.
Arterioscler Thromb Vasc Biol
2009;
29
: 1179–1184. doi: 10.1161/
ATVBAHA.109.189175.
96. Signorelli SS, Malaponte G, Libra M, Di Pino L, Celotta G, Bevelacqua
V,
et al.
Plasma levels and zymographic activities of matrix metallopro-
teinases 2 and 9 in type II diabetics with peripheral arterial disease.
Vasc
Med
2005;
10
: 1–6. doi: 10.1191/1358863x05vm582oa.
97. Pradhan-Palikhe P, Vikatmaa P, Lajunen T, Palikhe A, Lepantalo M,
Tervahartiala T,
et al
. Elevated MMP-8 and decreased myeloperoxidase
concentrations associate significantly with the risk for peripheral athero-
sclerosis disease and abdominal aortic aneurysm.
Scand J Immunol
2010;
72
: 150–157. doi: 10.1111/j.1365-3083.2010.02418.x.
98. Tayebjee MH, Tan KT, MacFadyen RJ, Lip GY. Abnormal circulating
levels of metalloprotease 9 and its tissue inhibitor 1 in angiographi-
cally proven peripheral arterial disease: relationship to disease severity.
J
Intern Med
2005;
257
: 110–116. doi: 10.1111/j.1365-2796.2004.01431.x.
99. Kawada T, Otsuka T, Endo T, Kon Y. The metabolic syndrome, smok-
ing, inflammatory markers and obesity.
Int J Cardiol
2011;
151
(3):
367–368; author reply 373-4. doi: 10.1016/j.ijcard.2011.06.095. Epub
2011 Jul 7.
100. Rom O, Karkabi K, Reznick AZ, Keidar Z, Aizenbud D. Relathionship
between history of smoking, metabolic and inflammatory markers,