Background Image
Table of Contents Table of Contents
Previous Page  67 / 74 Next Page
Information
Show Menu
Previous Page 67 / 74 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 5, September/October 2018

AFRICA

329

72. Pilz S, Horejsi R, Moller R, Almer G, Scharnagl H, Stojakovic T,

et

al.

Early atherosclerosis in obese juveniles is associated with low serum

levels of adiponectin.

J Clin Endocrinol Metab

2005;

90

: 4792–4796. doi:

10.1210/jc.2005-0167.

73. Svensson P, de Faire U, Niklasson U, Hansson LF, Ostergren J.

Plasma NT-proBNP concentration is related to ambulatory pulse pres-

sure in peripheral arterial disease.

Blood Press

2005;

14

: 99–106. doi:

10.1080/08037050510008931.

74. Jouni H, Rodeheffer RJ, Kullo IJ. Increased serum N-terminal pro-B-

type natriuretic peptide levels in patients with medial arterial calcifica-

tion and poorly compressible leg arteries.

Arterioscler Thromb Vasc Biol

2011;

31

: 197–202. doi: 10.1161/ATVBAHA.110.216770.

75. Fan J, Jouni H, Khaleghi M, Bailey KR, Kullo IJ. Serum N-terminal

pro-B-type natriuretic peptide levels are associated with functional

capacity in patients with peripheral arterial disease.

Angiology

2012;

63

:

435–442. doi: 10.1177/0003319711423095.

76. Mueller T, Dieplinger B, Poelz W, Endler G, Wagner OF, Haltmayer M.

Amino-terminal pro-B-type natriuretic peptide as predictor of mortality

in patients with symptomatic peripheral arterial disease: 5-year follow-

up data from the Linz Peripheral Arterial Disease Study.

Clin Chem

2009;

55

: 68–77. doi: 10.1373/clinchem.2008.108753.

77. Falcone C, Bozzini S, Guasti L, D’Angelo A, Capettini AC, Paganini

EM,

et al.

Soluble RAGE plasma levels in patients with coronary artery

disease and peripheral artery disease.

Sci World J

2013;

2013

: 584504.

doi: 10.1155/2013/584504.

78. Geroldi D, Falcone C, Emanuele E. Soluble receptor for advanced glyca-

tion end products: from disease marker to potential therapeutic target.

Curr Med Chem

2006;

13

: 1971–1978. doi: 10.2174/092986706777585013

79. Prasad K, Mishra M. Do Advanced glycation end products and its

receptor play a role in pathophysiology of hypertension?

Int J Angiol

2017;

26

: 1–11. doi: 10.1055/s-0037-1598183.

80. Agarwal I, Arnold A, Glazer NL, Barasch E, Djousse L, Fitzpatrick

AL,

et al

. Fibrosis-related biomarkers and large and small vessel disease:

the Cardiovascular Health Study.

Atherosclerosis

2015;

239

: 539–546.

doi: 10.1016/j.atherosclerosis.2015.02.020.

81. Ha DM, Carpenter LC, Koutakis P, Swanson SA, Zhu Z, Hanna M,

et al

. Transforming growth factor-beta 1 produced by vascular smooth

muscle cells predicts fibrosis in the gastrocnemius of patients with

peripheral artery disease.

J Transl Med

2016;

14

: 39. doi: 10.1186/

s12967-016-0790-3.

82. McDermott MM, Guralnik JM, Corsi A, Albay M, Macchi C,

Bandinelli S,

et al.

Patterns of inflammation associated with peripheral

arterial disease: the InCHIANTI study.

Am Heart J

2005;

150

: 276–281.

doi: 10.1016/j.ahj.2004.09.032.

83. Kikuchi R, Nakamura K, MacLauchlan S, Ngo DT, Shimizu I, Fuster

JJ,

et al

. An antiangiogenic isoform of VEGF-A contributes to impaired

vascularization in peripheral artery disease.

Nat Med

2014;

20

: 1464–

1471. doi: 10.1038/nm.3703.

84. Blann AD, Belgore FM, McCollum CN, Silverman S, Lip PL, Lip GY.

Vascular endothelial growth factor and its receptor, Flt-1, in the plasma

of patients with coronary or peripheral atherosclerosis, or Type II diabe-

tes.

Clin Sci

(Lond) 2002;

102

: 187–194. doi: 10.1042/cs1020187.

85. Makin AJ, Chung NA, Silverman SH, Lip GY. Vascular endothelial

growth factor and tissue factor in patients with established peripheral

artery disease: a link between angiogenesis and thrombogenesis?

Clin Sci

(Lond) 2003;

104

: 397–404. doi: 10.1042/CS20020182.

86. Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. Plasma

levels of soluble Tie2 and vascular endothelial growth factor distinguish

critical limb ischemia from intermittent claudication in patients with

peripheral arterial disease.

J Am Coll Cardiol

2008;

52

: 387–393. doi:

10.1016/j.jacc.2008.02.045.

87. Bover LC, Cardo-Vila M, Kuniyasu A, Sun J, Rangel R, Takeya M,

et al

. A previously unrecognized protein-protein interaction between

TWEAK and CD163: potential biological implications.

J Immunol

2007;

178

: 8183–8194. doi: 10.4049/jimmunol.178.12.8183.

88. Blanco-Colio LM, Martin-Ventura JL, Munoz-Garcia B, Moreno

JA, Meilhac O, Ortiz A,

et al.

TWEAK and Fn14. New players in the

pathogenesis of atherosclerosis.

Front Biosci

2007;

12

: 3648–3655. doi:

10.2741/2341.

89. Moreno JA, Dejouvencel T, Labreuche J, Smadja DM, Dussiot M,

Martin-Ventura JL,

et al

. Peripheral artery disease is associated with a

high CD163/TWEAK plasma ratio.

Arterioscler Thromb Vasc Biol

2010;

30

: 1253–1262. doi: 10.1161/ATVBAHA.110.203364.

90. Urbonaviciene G, Martin-Ventura JL, Lindholt JS, Urbonavicius S,

Moreno JA, Egido J,

et al

. Impact of soluble TWEAK and CD163/

TWEAK ratio on long-term cardiovascular mortality in patients with

peripheral arterial disease.

Atherosclerosis

2011;

219

: 892–899. doi:

10.1016/j.atherosclerosis.2011.09.016.

91. Smadja DM, d’Audigier C, Bieche I, Evrard S, Mauge L, Dias JV,

et al.

Thrombospondin-1 is a plasmatic marker of peripheral arterial

disease that modulates endothelial progenitor cell angiogenic proper-

ties.

Arterioscler Thromb Vasc Biol

2011;

31

: 551–559. doi: 10.1161/

ATVBAHA.110.220624.

92. Peter EA, Shen X, Shah SH, Pardue S, Glawe JD, Zhang WW,

et

al

. Plasma free H2S levels are elevated in patients with cardiovas-

cular disease.

J Am Heart Assoc

2013;

2

: e000387. doi: 10.1161/

JAHA.113.000387.

93. Hoier B, Walker M, Passos M, Walker PJ, Green A, Bangsbo J,

et al.

Angiogenic response to passive movement and active exercise in indi-

viduals with peripheral arterial disease.

J Appl Physiol

(1985) 2013;

115

:

1777–1787. doi: 10.1152/japplphysiol.00979.2013.

94. Martinez-Aguilar E, Gomez-Rodriguez V, Orbe J, Rodriguez JA,

Fernandez-Alonso L, Roncal C,

et al

. Matrix metalloproteinase 10 is

associated with disease severity and mortality in patients with periph-

eral arterial disease.

J Vasc Surg

2015;

61

: 428–435. doi: 10.1016/j.

jvs.2014.09.002.

95. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, Lin FY,

et al

.

Matrix metalloproteinase-9 is essential for ischemia-induced neovascu-

larization by modulating bone marrow-derived endothelial progenitor

cells.

Arterioscler Thromb Vasc Biol

2009;

29

: 1179–1184. doi: 10.1161/

ATVBAHA.109.189175.

96. Signorelli SS, Malaponte G, Libra M, Di Pino L, Celotta G, Bevelacqua

V,

et al.

Plasma levels and zymographic activities of matrix metallopro-

teinases 2 and 9 in type II diabetics with peripheral arterial disease.

Vasc

Med

2005;

10

: 1–6. doi: 10.1191/1358863x05vm582oa.

97. Pradhan-Palikhe P, Vikatmaa P, Lajunen T, Palikhe A, Lepantalo M,

Tervahartiala T,

et al

. Elevated MMP-8 and decreased myeloperoxidase

concentrations associate significantly with the risk for peripheral athero-

sclerosis disease and abdominal aortic aneurysm.

Scand J Immunol

2010;

72

: 150–157. doi: 10.1111/j.1365-3083.2010.02418.x.

98. Tayebjee MH, Tan KT, MacFadyen RJ, Lip GY. Abnormal circulating

levels of metalloprotease 9 and its tissue inhibitor 1 in angiographi-

cally proven peripheral arterial disease: relationship to disease severity.

J

Intern Med

2005;

257

: 110–116. doi: 10.1111/j.1365-2796.2004.01431.x.

99. Kawada T, Otsuka T, Endo T, Kon Y. The metabolic syndrome, smok-

ing, inflammatory markers and obesity.

Int J Cardiol

2011;

151

(3):

367–368; author reply 373-4. doi: 10.1016/j.ijcard.2011.06.095. Epub

2011 Jul 7.

100. Rom O, Karkabi K, Reznick AZ, Keidar Z, Aizenbud D. Relathionship

between history of smoking, metabolic and inflammatory markers,