CARDIOVASCULAR JOURNAL OF AFRICA • Volume 27, No 1, January/February 2016
10
AFRICA
16. Splawski I, Shen J, Timothy KW,
et al
. Spectrum of mutations in
long-QT syndrome genes : KVLQT1, HERG, SCN5A, KCNE1, and
KCNE2.
Circulation
2000;
102
(10): 1178–1185.
17. Larsen LA, Andersen PS, Kanters J,
et al.
Screening for mutations and
polymorphisms in the genes KCNH2 and KCNE2 encoding the cardiac
HERG/MiRP1 ion channel: implications for acquired and congenital
long Q-T syndrome.
Clin Chem
2001;
47
(8): 1390–1395.
18. Mazhari R, Greenstein JL, Winslow RL, Marbán E, Nuss HB.
Molecular interactions between two long-QT syndrome gene products,
HERG and KCNE2, rationalized by
in vitro
and
in silico
analysis.
Circ
Res
2001;
89
(1): 33–38.
19. Zhang M, Wang Y, Jiang M,
et al
. KCNE2 protein is more abundant
in ventricles than in atria and can accelerate hERG protein degradation
in a phosphorylation-dependent manner.
Am J Physiol
–
Heart Circ
Physiol
2012;
302
(4): H910–922.
20. Tinel N. KCNE2 confers background current characteristics to the
cardiac KCNQ1 potassium channel.
Eur Mole Biol Org J
2000;
19
(23):
6326–6330.
21. Towbin JA, Vatta M. Molecular biology and the prolonged QT
syndromes.
Am J Med
2001;
110
(5): 385–398.
22. Chun KRJ, Koenen M, Katus HA, Zehelein J. Expression of the IKr
components KCNH2 (rERG) and KCNE2 (rMiRP1) during late rat
heart development.
Exp Mol Med
2004;
36
(4): 367–371.
23. Kawakami K, Nagatomo T, Abe H,
et al
. Comparison of HERG
channel blocking effects of various
β
-blockers – implication for clinical
strategy.
Br J Pharmacol
2006;
147
(6): 642–652.
24. Clark RE, Christlieb I, Sanmarco M, Diaz-Perez R, Dammann JF,
Zipser ME. Relationship of hypoxia to arrhythmia and cardiac conduc-
tion hemorrhage: an experimental study.
Circulation
1963;
27
(4):
742–747.
25. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium
current in rat ventricular myocytes.
J Physiol
1996;
497
(Pt 2): 337–347.
26. Prandota J. Possible pathomechanisms of sudden infant death syndrome:
key role of chronic hypoxia, infection/inflammation states, cytokine
irregularities, and metabolic trauma in genetically predisposed infants.
Am J Ther
2004;
11
(6): 517–546.
27. Neary MT, Mohun TJ, Breckenridge RA. A mouse model to study
the link between hypoxia, long QT interval and sudden infant death
syndrome.
Dis Model Mech
2013;
6
(2): 503–507.
28. Conforti L, Millhorn DE. Selective inhibition of a slow-inactivating
voltage-dependent K
+
channel in rat PC12 cells by hypoxia.
J Physiol
1997;
502
(Pt 2): 293–305.
29. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA. Chronic
hypoxia inhibits Kv channel gene expression in rat distal pulmonary
artery.
Am J Physiol Lung Cell Mol Physiol
2005;
288
(6): L1049–1058.
30. Nanduri J, Bergson P, Wang N, Ficker E, Prabhakar NR. Hypoxia
inhibits maturation and trafficking of HERG K
+
channel protein:
Role of Hsp90 and ROS.
Biochem Biophys Res Commun
2009;
388
(2):
212–216.
31. Xia S, Wang Y, Zhang Y,
et al.
Dynamic changes in HCN2, HCN4,
KCNE1, and KCNE2 expression in ventricular cells from acute myocar-
dial infarction rat hearts.
Biochem Biophys Res Commun
2010;
395
(3):
330–335.
32. Van der Ven PF, Obermann WM, Lemke B, Gautel M, Weber K, Fürst
DO. Characterization of muscle filamin isoforms suggests a possible role
of gamma-filamin/ABP-L in sarcomeric Z-disc formation.
Cell Motil
Cytoskeleton
2000;
45
(2): 149–162.
33. Cho K-O, Lee K-E, Youn D-Y,
et al
. Decreased vulnerability of
hippocampal neurons after neonatal hypoxia-ischemia in bis-deficient
mice.
Glia
2012;
60
(12): 1915–1929.
34. Nissou M-F, El Atifi M, Guttin A,
et al.
Hypoxia-induced expression of
VE-cadherin and filamin B in glioma cell cultures and pseudopalisade
structures.
J Neurooncol
2013;
113
(2): 239–249.
35. Kley RA, Hellenbroich Y, van der Ven PFM,
et al
. Clinical and morpho-
logical phenotype of the filamin myopathy: a study of 31 German
patients.
Brain
2007;
130
(12): 3250–3264.
36. Goldfarb LG, Olivé M, Vicart P, Goebel HH. Intermediate filament
diseases: desminopathy.
Adv Exp Med Biol
2008;
642
: 131–164.
37. Feng Y, Walsh CA. The many faces of filamin: a versatile molecular
scaffold for cell motility and signalling.
Nat Cell Biol
2004;
6
(11):
1034–1038.
38. Ithychanda SS, Hsu D, Li H,
et al
. Identification and characterization
of multiple similar ligand-binding repeats in filamin implication on
filamin-mediated receptor clustering and cross-talk.
J Biol Chem
2009;
284
(50): 35113–35121.
39. Lecour S, Suleman N, Deuchar GA,
et al.
Pharmacological precondi-
tioning with tumor necrosis factor-
α
activates signal transducer and
activator of transcription-3 at reperfusion without involving classic
prosurvival kinases (Akt and extracellular signal-regulated kinase).
Circulation
2005;
112
(25): 3911–3918.
40. Bradford MM. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding.
Anal Biochem
1976;
72
: 248–254.
41. Abbott GW. Disease-associated mutations in KCNE potassium channel
subunits (MiRPs) reveal promiscuous disruption of multiple currents
and conservation of mechanism.
Fed Am Soc Exp Biol J
2002;
16
(3):
390–400.
42. Fujita M, Mitsuhashi H, Isogai S,
et al.
Filamin C plays an essential role
in the maintenance of the structural integrity of cardiac and skeletal
muscles, revealed by the medaka mutant zacro.
Dev Biol
2012;
361
(1):
79–89.
43. Nakagawa K, Sugahara M, Yamasaki T,
et al
. Filamin associates with
stress signalling kinases MKK7 and MKK4 and regulates JNK activa-
tion.
Biochem J
2010;
427
(2): 237–245.
44. Razinia Z, Mäkelä T, Ylänne J, Calderwood DA. Filamins in mechano-
sensing and signaling.
A Rev Biophys
2012;
41
(1): 227–246.
45. Boraldi F, Annovi G, Carraro F,
et al
. Hypoxia influences the cellular
cross-talk of human dermal fibroblasts. A proteomic approach.
Biochim
Biophys Acta BBA
–
Proteins Proteomics
2007;
1774
(11): 1402–1413.
46. Hastie LE, Patton WF, Hechtman HB, Shepro D. H
2
O
2
-induced
filamin redistribution in endothelial cells is modulated by the cyclic
AMP-dependent protein kinase pathway.
J Cell Physiol
1997;
172
(3):
373–381.
47. Kesner BA, Ding F, Temple BR, Dokholyan NV. N-terminal strands
of filamin Ig domains act as a conformational switch under biological
forces.
Proteins
2010;
78
(1): 12–24.
48. Petrecca K, Miller DM, Shrier A. Localization and enhanced current
density of the Kv4.2 potassium channel by interaction with the actin-
binding protein filamin.
J Neurosci Off J Soc Neurosci
2000;
20
(23):
8736–8744.
49. Sampson LJ, Leyland ML, Dart C. Direct interaction between the
actin-binding protein filamin-A and the inwardly rectifying potassium
channel, Kir2.1.
J Biol Chem
2003;
278
(43): 41988–41997.
50. Kim EY, Ridgway LD, Dryer SE. Interactions with filamin A stimulate
surface expression of large-conductance Ca
2+
-activated K
+
channels
in the absence of direct actin binding.
Mol Pharmacol
2007;
72
(3):
622–630.
51. An WF, Bowlby MR, Betty M,
et al
. Modulation of A-type potas-
sium channels by a family of calcium sensors.
Nature
2000;
403
(6769):
553–556.