Background Image
Table of Contents Table of Contents
Previous Page  13 / 64 Next Page
Information
Show Menu
Previous Page 13 / 64 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 27, No 1, January/February 2016

AFRICA

11

52. Zaika O, Zhang J, Shapiro MS. Functional role of M-type (KCNQ) K

+

channels in adrenergic control of cardiomyocyte contraction rate by

sympathetic neurons.

J Physiol

2011;

589

(Pt 10): 2559–2568.

53. Kaczmarek LK. Slack, slick, and sodium-activated potassium channels.

Int Sch Res Not

2013;

2013

: e354262.

54. Zhang M, Jiang M, Tseng G-N. MinK-related peptide 1 associates with

Kv4.2 and modulates its gating function: potential role as subunit of

cardiac transient outward channel?

Circ Res

2001;

88

(10): 1012–1019.

55. Abbott GW. KCNE2 and the K channel: the tail wagging the dog.

Channels

2012;

6

(1). doi:10.4161/chan.6.1.19126.

56. Chan F-C, Cheng C-P, Wu K-H,

et al.

Intercalated disc-associated

protein, mXin-alpha, influences surface expression of ITO currents in

ventricular myocytes.

Front Biosci Elite Ed

2011;

3

: 1425–1442.

57. Van der Flier A, Sonnenberg A. Structural and functional aspects of

filamins.

Biochim Biophys Acta BBA

Mol Cell Res

2001;

1538

(2–3):

99–117.

58. Himmel M, Van der Ven PFM, Stöcklein W, Fürst DO. The limits of

promiscuity: isoform-specific dimerization of filamins.

Biochemistry

(Mosc)

2003;

42

(2): 430–439.

59. Vorgerd M, Van der Ven PFM,

et al

. A mutation in the dimerization

domain of filamin c causes a novel type of autosomal dominant myofi-

brillar myopathy.

Am J Hum Genet

2005;

77

(2): 297–304.

60. Zieseniss A. Hypoxia and the modulation of the actin cytoskeleton –

emerging interrelations.

Hypoxia

2014; 11.

61. Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M.

H9c2 and HL-1 cells demonstrate distinct features of energy metabo-

lism, mitochondrial function and sensitivity to hypoxia–reoxygenation.

Biochim Biophys Acta

2015;

1853

(2): 276–284.

62. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial

antioxidants in ischemia–reperfusion injury.

Cardiovasc Res

2000;

47

(3):

446–456.

63. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial

reperfusion injury: preconditioning, postconditioning, and translational

aspects of protective measures.

Am J Physiol

-

Heart Circ Physiol

2011;

301

(5): H1723–1741.

64. Bonavita F, Stefanelli C, Giordano E,

et al

. H9c2 cardiac myoblasts

undergo apoptosis in a model of ischemia consisting of serum depriva-

tion and hypoxia: inhibition by PMA.

FEBS Lett

2003;

536

(1–3): 85–91.

65. Nakamura M, Wang NP, Zhao ZQ,

et al

. Preconditioning decreases Bax

expression, PMN accumulation and apoptosis in reperfused rat heart.

Cardiovasc Res

2000;

45

(3): 661–670.

66. Hong Z, Weir EK, Nelson DP, Olschewski A. Subacute hypoxia

decreases voltage-activated potassium channel expression and function

in pulmonary artery myocytes.

Am J Respir Cell Mol Biol

2004;

31

(3):

337–343.

67. Henke RM, Dastidar RG, Shah A,

et al

. Hypoxia elicits broad and

systematic changes in protein subcellular localization.

Am J Physiol

Cell Physiol

2011;

301

(4): C913–928.

68. Nanduri J, Wang N, Bergson P, Yuan G, Ficker E, Prabhakar NR.

Mitochondrial reactive oxygen species mediate hypoxic down-regulation

of hERG channel protein.

Biochem Biophys Res Commun

2008;

373

(2):

309–314.

69. Minsaas L, Planagumà J, Madziva M,

et al.

Filamin A binds to CCR2B

and regulates its internalization.

PLoS ONE

2010;

5

(8): e12212.

70. Noam Y, Ehrengruber MU, Koh A,

et al

. Filamin A promotes dynamin-

dependent internalization of hyperpolarization-activated cyclic nucleo-

tide-gated type 1 (HCN1) channels and restricts Ih in hippocampal

neurons.

J Biol Chem

2014;

289

(9): 5889–5903.

71. Mazzochi C, Benos DJ, Smith PR. Interaction of epithelial ion channels

with the actin-based cytoskeleton.

Am J Physiol Renal Physiol

2006;

291

(6): F1113–1122.

72. Vatta M, Faulkner G. Cytoskeletal basis of ion channel function in

cardiac muscle.

Future Cardiol

2006;

2

(4): 467–476.

73. Steele DF, Fedida D. Cytoskeletal roles in cardiac ion channel expres-

sion.

Biochim Biophys Acta

2014;

1838

(2): 665–673.

74. López-López J, González C, Ureña J, López-Barneo J. Low pO

2

selec-

tively inhibits K channel activity in chemoreceptor cells of the mamma-

lian carotid body.

J Gen Physiol

1989;

93

(5): 1001–1015.

75. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of

cardiac arrhythmias.

Cell

2001;

104

(4): 569–580.

76. Sanguinetti MC. When the KChIPs are down.

Nat Med

2002;

8

(1):

18–19.

77. Um SY, McDonald TV. Differential association between HERG and

KCNE1 or KCNE2.

PLoS ONE

2007;

2

(9): e933.

78. Jiang M, Zhang M, Tang DG,

et al.

KCNE2 protein is expressed in

ventricles of different species, and changes in its expression contribute

to electrical remodeling in diseased hearts.

Circulation

2004;

109

(14):

1783–1788.

79. Chandrasekhar KD, Bas T, Kobertz WR. KCNE1 subunits require

co-assembly with K

+

channels for efficient trafficking and cell surface

expression.

J Biol Chem

2006;

281

(52): 40015–40023.

80. Chandrasekhar KD, Lvov A, Terrenoire C, Gao GY, Kass RS, Kobertz

WR. O-glycosylation of the cardiac I(Ks) complex.

J Physiol

2011;

589

(Pt 15): 3721–3730.