CARDIOVASCULAR JOURNAL OF AFRICA • Volume 27, No 1, January/February 2016
AFRICA
11
52. Zaika O, Zhang J, Shapiro MS. Functional role of M-type (KCNQ) K
+
channels in adrenergic control of cardiomyocyte contraction rate by
sympathetic neurons.
J Physiol
2011;
589
(Pt 10): 2559–2568.
53. Kaczmarek LK. Slack, slick, and sodium-activated potassium channels.
Int Sch Res Not
2013;
2013
: e354262.
54. Zhang M, Jiang M, Tseng G-N. MinK-related peptide 1 associates with
Kv4.2 and modulates its gating function: potential role as subunit of
cardiac transient outward channel?
Circ Res
2001;
88
(10): 1012–1019.
55. Abbott GW. KCNE2 and the K channel: the tail wagging the dog.
Channels
2012;
6
(1). doi:10.4161/chan.6.1.19126.
56. Chan F-C, Cheng C-P, Wu K-H,
et al.
Intercalated disc-associated
protein, mXin-alpha, influences surface expression of ITO currents in
ventricular myocytes.
Front Biosci Elite Ed
2011;
3
: 1425–1442.
57. Van der Flier A, Sonnenberg A. Structural and functional aspects of
filamins.
Biochim Biophys Acta BBA
–
Mol Cell Res
2001;
1538
(2–3):
99–117.
58. Himmel M, Van der Ven PFM, Stöcklein W, Fürst DO. The limits of
promiscuity: isoform-specific dimerization of filamins.
Biochemistry
(Mosc)
2003;
42
(2): 430–439.
59. Vorgerd M, Van der Ven PFM,
et al
. A mutation in the dimerization
domain of filamin c causes a novel type of autosomal dominant myofi-
brillar myopathy.
Am J Hum Genet
2005;
77
(2): 297–304.
60. Zieseniss A. Hypoxia and the modulation of the actin cytoskeleton –
emerging interrelations.
Hypoxia
2014; 11.
61. Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M.
H9c2 and HL-1 cells demonstrate distinct features of energy metabo-
lism, mitochondrial function and sensitivity to hypoxia–reoxygenation.
Biochim Biophys Acta
2015;
1853
(2): 276–284.
62. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial
antioxidants in ischemia–reperfusion injury.
Cardiovasc Res
2000;
47
(3):
446–456.
63. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial
reperfusion injury: preconditioning, postconditioning, and translational
aspects of protective measures.
Am J Physiol
-
Heart Circ Physiol
2011;
301
(5): H1723–1741.
64. Bonavita F, Stefanelli C, Giordano E,
et al
. H9c2 cardiac myoblasts
undergo apoptosis in a model of ischemia consisting of serum depriva-
tion and hypoxia: inhibition by PMA.
FEBS Lett
2003;
536
(1–3): 85–91.
65. Nakamura M, Wang NP, Zhao ZQ,
et al
. Preconditioning decreases Bax
expression, PMN accumulation and apoptosis in reperfused rat heart.
Cardiovasc Res
2000;
45
(3): 661–670.
66. Hong Z, Weir EK, Nelson DP, Olschewski A. Subacute hypoxia
decreases voltage-activated potassium channel expression and function
in pulmonary artery myocytes.
Am J Respir Cell Mol Biol
2004;
31
(3):
337–343.
67. Henke RM, Dastidar RG, Shah A,
et al
. Hypoxia elicits broad and
systematic changes in protein subcellular localization.
Am J Physiol
–
Cell Physiol
2011;
301
(4): C913–928.
68. Nanduri J, Wang N, Bergson P, Yuan G, Ficker E, Prabhakar NR.
Mitochondrial reactive oxygen species mediate hypoxic down-regulation
of hERG channel protein.
Biochem Biophys Res Commun
2008;
373
(2):
309–314.
69. Minsaas L, Planagumà J, Madziva M,
et al.
Filamin A binds to CCR2B
and regulates its internalization.
PLoS ONE
2010;
5
(8): e12212.
70. Noam Y, Ehrengruber MU, Koh A,
et al
. Filamin A promotes dynamin-
dependent internalization of hyperpolarization-activated cyclic nucleo-
tide-gated type 1 (HCN1) channels and restricts Ih in hippocampal
neurons.
J Biol Chem
2014;
289
(9): 5889–5903.
71. Mazzochi C, Benos DJ, Smith PR. Interaction of epithelial ion channels
with the actin-based cytoskeleton.
Am J Physiol Renal Physiol
2006;
291
(6): F1113–1122.
72. Vatta M, Faulkner G. Cytoskeletal basis of ion channel function in
cardiac muscle.
Future Cardiol
2006;
2
(4): 467–476.
73. Steele DF, Fedida D. Cytoskeletal roles in cardiac ion channel expres-
sion.
Biochim Biophys Acta
2014;
1838
(2): 665–673.
74. López-López J, González C, Ureña J, López-Barneo J. Low pO
2
selec-
tively inhibits K channel activity in chemoreceptor cells of the mamma-
lian carotid body.
J Gen Physiol
1989;
93
(5): 1001–1015.
75. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of
cardiac arrhythmias.
Cell
2001;
104
(4): 569–580.
76. Sanguinetti MC. When the KChIPs are down.
Nat Med
2002;
8
(1):
18–19.
77. Um SY, McDonald TV. Differential association between HERG and
KCNE1 or KCNE2.
PLoS ONE
2007;
2
(9): e933.
78. Jiang M, Zhang M, Tang DG,
et al.
KCNE2 protein is expressed in
ventricles of different species, and changes in its expression contribute
to electrical remodeling in diseased hearts.
Circulation
2004;
109
(14):
1783–1788.
79. Chandrasekhar KD, Bas T, Kobertz WR. KCNE1 subunits require
co-assembly with K
+
channels for efficient trafficking and cell surface
expression.
J Biol Chem
2006;
281
(52): 40015–40023.
80. Chandrasekhar KD, Lvov A, Terrenoire C, Gao GY, Kass RS, Kobertz
WR. O-glycosylation of the cardiac I(Ks) complex.
J Physiol
2011;
589
(Pt 15): 3721–3730.