Background Image
Table of Contents Table of Contents
Previous Page  23 / 72 Next Page
Information
Show Menu
Previous Page 23 / 72 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 27, No 2, March/April 2016

AFRICA

77

20. Sargent IL, Germain SJ, Sacks GP, Kumar S, Redman CW. Trophoblast

deportation and the maternal inflammatory response in pre-eclampsia.

J Reprod Immunol

2003;

59

(2): 153–160.

21. Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW.

Systemic inflammatory priming in normal pregnancy and preeclampsia:

the role of circulating syncytiotrophoblast microparticles.

J Immunol

2007;

178

(9): 5949–5956.

22. Tannetta DS, Dragovic RA, Gardiner C, Redman CW, Sargent IL.

Characterisation of syncytiotrophoblast vesicles in normal pregnancy

and pre-eclampsia: expression of Flt-1 and endoglin.

PLoS One

2013;

8

(2): e56754.

23. Staff AC, Johnsen GM, Dechend R, Redman CW. Preeclampsia and

uteroplacental acute atherosis: immune and inflammatory factors.

J

Reprod Immunol

2014;

101–102

: 120–126.

24. Redman CW, Sargent IL, Staff AC. IFPA Senior Award lecture: making

sense of pre-eclampsia – two placental causes of preeclampsia?

Placenta

2014;

35

(Suppl): S20–25.

25. Founds SA, Conley YP, Lyons-Weiler JF, Jeyabalan A, Hogge WA,

Conrad KP. Altered global gene expression in first trimester placentas of

women destined to develop preeclampsia.

Placenta

2009;

30

(1): 15–24.

26. Pollheimer J, Fock V, Knofler M. Review: the ADAM metallopro-

teinases – novel regulators of trophoblast invasion?

Placenta

2014;

35

(Suppl): S57–63.

27. Ramesar SV, Mackraj I, Gathiram P, Moodley J. Sildenafil citrate

improves fetal outcomes in pregnant, L-NAME treated, Sprague-

Dawley rats.

Eur J Obstet Gynecol Reprod Biol

2010;

149

(1): 22–26.

28. Ramesar SV, Mackraj I, Gathiram P, Moodley J. Sildenafil citrate

decreases sFlt-1 and sEng in pregnant l-NAME treated Sprague-Dawley

rats.

Eur J Obstet Gynecol Reprod Biol

2011;

157

(2): 136–140.

29. Baijnath S, Soobryan N, Mackraj I, Gathiram P, Moodley J. The opti-

mization of a chronic nitric oxide synthase (NOS) inhibition model of

pre-eclampsia by evaluating physiological changes.

Eur J Obstet Gynecol

Reprod Biol

2014;

182

: 71–75.

30. Redman CW, Sargent IL. Latest advances in understanding preeclamp-

sia.

Science

2005;

308

(5728): 1592–1594.

31. Hung TH, Burton GJ. Hypoxia and reoxygenation: a possible mecha-

nism for placental oxidative stress in preeclampsia.

Taiwan J Obstet

Gynecol

2006;

45

(3): 189–200.

32. Yung HW, Atkinson D, Campion-Smith T, Olovsson M, Charnock-

Jones DS, Burton GJ. Differential activation of placental unfolded

protein response pathways implies heterogeneity in causation of early-

and late-onset pre-eclampsia.

J Pathol

2014;

234

(2): 262–276.

33. Hansson SR, Naav A, Erlandsson L. Oxidative stress in preeclampsia

and the role of free fetal hemoglobin.

Front Physiol

2014;

5

: 516.

34. Sargent IL, Borzychowski AM, Redman CW. Immunoregulation in

normal pregnancy and pre-eclampsia: an overview.

Reprod Biomed

Online

2006;

13

(5): 680–686.

35. Hawfield A, Freedman BI. Pre-eclampsia: the pivotal role of the placen-

ta in its pathophysiology and markers for early detection.

Therapeut Adv

Cardiovasc Dis

2009;

3

(1): 65–73.

36. Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi JM. Pre-eclampsia:

pathophysiology, diagnosis, and management.

Vasc Health Risk Mgmt

2011;

7

: 467–474.

37. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial

growth factor acts as a survival factor for newly formed retinal vessels

and has implications for retinopathy of prematurity.

Nature Med

1995;

1

(10): 1024–1028.

38. Tal R. The role of hypoxia and hypoxia-inducible factor-1alpha in

preeclampsia pathogenesis.

Biol Reprod

2012;

87

(6): 134.

39. Taylor RN, Grimwood J, Taylor RS, McMaster MT, Fisher SJ, North

RA. Longitudinal serum concentrations of placental growth factor:

evidence for abnormal placental angiogenesis in pathologic pregnancies.

Am J Obstet Gynecol

2003;

188

(1): 177–182.

40. Jones RL, Stoikos C, Findlay JK, Salamonsen LA. TGF-beta super-

family expression and actions in the endometrium and placenta.

Reproduction

2006;

132

(2): 217–232.

41. Fu G, Ye G, Nadeem L,

et al

. MicroRNA-376c impairs transforming

growth factor-beta and nodal signaling to promote trophoblast cell

proliferation and invasion.

Hypertension

2013;

61

(4): 864–872.

42. Bdolah Y, Karumanchi SA, Sachs BP. Recent advances in understand-

ing of preeclampsia.

Croatian Med J

2005;

46

(5): 728–736.

43. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial

growth factor (VEGF) and its receptors.

FASEB J

1999;

13

(1): 9–22.

44. Venkatesha S, Toporsian M, Lam C,

et al

. Soluble endoglin contributes

to the pathogenesis of preeclampsia.

Nature Med

2006;

12

(6): 642–649.

45. Bell MJ, Conley YP. A systematic review of endoglin gene expression in

preeclampsia.

Biol Res Nurs

2013;

15

(2): 129–136.

46. Bdolah Y, Sukhatme VP, Karumanchi SA. Angiogenic imbalance in

the pathophysiology of preeclampsia: newer insights.

Seminars Nephrol

2004;

24

(6): 548–556.

47. Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia.

Seminars Nephrol

2011;

31

(1): 33–46.

48. Levine RJ, Maynard SE, Qian C,

et al

. Circulating angiogenic factors

and the risk of preeclampsia.

New Engl J Med

2004;

350

(7): 672–683.

49. Romero R, Nien JK, Espinoza J,

et al

. A longitudinal study of angio-

genic (placental growth factor) and anti-angiogenic (soluble endoglin

and soluble vascular endothelial growth factor receptor-1) factors in

normal pregnancy and patients destined to develop preeclampsia and

deliver a small for gestational age neonate. J

Matern Fetal Neonatal Med

2008;

21

(1): 9–23.

50. Maynard SE, Min JY, Merchan J,

et al.

Excess placental soluble fms-

like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunc-

tion, hypertension, and proteinuria in preeclampsia.

J Clin Invest

2003;

111

(5): 649–658.

51. Govender N, Naicker T, Moodley J. Maternal imbalance between pro-

angiogenic and anti-angiogenic factors in HIV-infected women with

pre-eclampsia.

Cardiovasc J Afr

2013;

24

(5): 174–179.

52. Govender L, Mackraj I, Gathiram P, Moodley J. The role of angiogenic,

anti-angiogenic and vasoactive factors in pre-eclamptic African women:

early- versus late-onset pre-eclampsia.

Cardiovasc J Afr

2012;

23

(3):

153–159.

53. Erez O, Romero R, Espinoza J,

et al.

The change in concentrations of

angiogenic and anti-angiogenic factors in maternal plasma between the

first and second trimesters in risk assessment for the subsequent devel-

opment of preeclampsia and small-for-gestational age.

J Matern Fetal

Neonatal Med

2008;

21

(5): 279–287.

54. Vatten LJ, Asvold BO, Eskild A. Angiogenic factors in maternal circula-

tion and preeclampsia with or without fetal growth restriction.

Acta

Obstet Gynecol Scandin

2012;

91

(12): 1388–1394.

55. Chaiworapongsa T, Romero R, Kim YM,

et al

. Plasma soluble vascular

endothelial growth factor receptor-1 concentration is elevated prior to

the clinical diagnosis of pre-eclampsia.

J Matern Fetal Neonatal Med

2005;

17

(1): 3–18.

56. Thadhani R, Kisner T, Hagmann H,

et al

. Pilot study of extracor-

poreal removal of soluble fms-like tyrosine kinase 1 in preeclampsia.

Circulation

2011;

124

(8): 940–950.

57. Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of

the immune system in preeclampsia.

Molec Aspects Med

2007;

28

(2):

192–209.

58. Szarka A, Rigo J, Jr, Lazar L, Beko G, Molvarec A. Circulating