CARDIOVASCULAR JOURNAL OF AFRICA • Volume 27, No 2, March/April 2016
78
AFRICA
cytokines, chemokines and adhesion molecules in normal pregnancy
and preeclampsia determined by multiplex suspension array.
BMC
Immunol
2010;
11
: 59.
59. Saito S, Sakai M. Th1/Th2 balance in preeclampsia.
J Reprod Immunol
2003;
59
(2): 161–173.
60. Kumar A, Begum N, Prasad S, Agarwal S, Sharma S. IL-10, TNF-alpha
& IFN-gamma: potential early biomarkers for preeclampsia.
Cell
Immunol
2013;
283
(1–2): 70–74.
61. Peracoli JC, Bannwart-Castro CF, Romao M,
et al
. High levels of heat
shock protein 70 are associated with pro-inflammatory cytokines and
may differentiate early- from late-onset preeclampsia.
J Reprod Immunol
2013;
100
(2): 129–134.
62. Lau SY, Guild SJ, Barrett CJ,
et al
. Tumor necrosis factor-alpha,
interleukin-6, and interleukin-10 levels are altered in preeclampsia: a
systematic review and meta-analysis.
Am J Reprod Immunol
2013;
70
(5):
412–427.
63. Ajith A. The role of peripheral natural killer cells in immunocompro-
mised pre-eclamptic and normotensive pregnant black South Africans.
PhD dissertation, University of KwaZulu-Natal, Durban, 2016.
64. Pinheiro MB, Martins-Filho OA, Mota AP,
et al.
Severe preeclampsia
goes along with a cytokine network disturbance towards a systemic
inflammatory state.
Cytokine
2013;
62
(1): 165–173.
65. Laresgoiti-Servitje E. A leading role for the immune system in the patho-
physiology of preeclampsia.
J Leukoc Biol
2013;
94
(2): 247–257.
66. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development
during the first trimester: implications for the pathophysiology of pre-
eclampsia.
Placenta
2000;
21
(Suppl A): S25-30.
67. Yinon Y, Nevo O, Xu J, et al. Severe intrauterine growth restriction
pregnancies have increased placental endoglin levels: hypoxic regulation
via transforming growth factor-beta 3.
Am J Pathol
2008;
172
(1): 77-85.
68. Redman CW, Sargent IL. Placental stress and pre-eclampsia: a revised
view.
Placenta
2009;
30
(Suppl A): S38-42.
69. Tewksbury DA, Dart RA. High molecular weight angiotensinogen levels
in hypertensive pregnant women.
Hypertension
1982;
4
(5): 729–734.
70. Brown MA, Wang J, Whitworth JA. The renin–angiotensin–aldosterone
system in pre-eclampsia.
Clin Exp Hypertens
1997;
19
(5–6): 713–726.
71. Wenzel K, Rajakumar A, Haase H,
et al.
Angiotensin II type 1 recep-
tor antibodies and increased angiotensin II sensitivity in pregnant rats.
Hypertension
2011;
58
(1): 77–84.
72. Herse F, Verlohren S, Wenzel K,
et al
. Prevalence of agonistic autoan-
tibodies against the angiotensin II type 1 receptor and soluble fms-like
tyrosine kinase 1 in a gestational age-matched case study.
Hypertension
2009;
53
(2): 393–398.
73. Bobst SM, Day MC, Gilstrap LC, 3rd, Xia Y, Kellems RE. Maternal
autoantibodies from preeclamptic patients activate angiotensin recep-
tors on human mesangial cells and induce interleukin-6 and plasmi-
nogen activator inhibitor-1 secretion.
Am J Hypertens
2005;
18
(3):
330–336.
74. Xia Y, Kellems RE. Angiotensin receptor agonistic autoantibodies and
hypertension: preeclampsia and beyond.
Circ Res
2013;
113
(1): 78–87.
75. Papapetropoulos A, Pyriochou A, Altaany Z,
et al
. Hydrogen sulfide
is an endogenous stimulator of angiogenesis.
Proc Natl Acad Sci USA
2009;
106
(51): 21972–21977.
76. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as
a novel endogenous gaseous K(ATP) channel opener.
EMBO J
2001;
20
(21): 6008–6016.
77. You XJ, Xu C, Lu JQ,
et al
. Expression of cystathionine beta-synthase
and cystathionine gamma-lyase in human pregnant myometrium and
their roles in the control of uterine contractility.
PLoS One
2011;
6
(8):
e23788.
78. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace
JL. Hydrogen sulfide is an endogenous modulator of leukocyte-mediat-
ed inflammation.
FASEB J
2006;
20
(12): 2118–2120.
79. Zhuo Y, Chen PF, Zhang AZ, Zhong H, Chen CQ, Zhu YZ.
Cardioprotective effect of hydrogen sulfide in ischemic reperfusion
experimental rats and its influence on expression of survivin gene.
Biol
Pharm Bull
2009;
32
(8): 1406–1410.
80. Holwerda KM, Bos EM, Rajakumar A,
et al.
Hydrogen sulfide produc-
ing enzymes in pregnancy and preeclampsia.
Placenta
2012;
33
(6):
518–521.
81. Wang K, Ahmad S, Cai M,
et al.
Dysregulation of hydrogen sulfide
producing enzyme cystathionine gamma-lyase contributes to maternal
hypertension and placental abnormalities in preeclampsia.
Circulation
2013;
127
(25): 2514–2522.
82. Wang K, Ahmad S, Cai M,
et al
. Response to letter regarding article,
‘Dysregulation of hydrogen sulfide (H
2
S) producing enzyme cystathio-
nine gamma-lyase (CSE) contributes to maternal hypertension and
placental abnormalities in preeclampsia’.
Circulation
2014;
129
(22):
e517–518.
83. Zhou Y, Gormley MJ, Hunkapiller NM,
et al
. Reversal of gene dysregu-
lation in cultured cytotrophoblasts reveals possible causes of preeclamp-
sia.
J Clin Invest
2013;
123
(7): 2862–2872.
84. Basso O. Re: ‘Abortion, changed paternity, and risk of preeclampsia in
nulliparous women’.
Am J Epidemiol
2003;
158
(8): 825.
85. Shamsi U, Saleem S, Nishter N. Epidemiology and risk factors of
preeclampsia; an overview of observational studies.
Al Ameen J Med
Sci
2013;
6
(4): 292–300.