CARDIOVASCULAR JOURNAL OF AFRICA • Volume 31, No 6, November/December 2020
318
AFRICA
this study are those of the authors, and the above-mentioned funding sources
do not accept any liability in regard thereto. The authors acknowledge the
participants and research assistants for their contribution towards the success
of this study. The shopping mall owners are also acknowledged for allowing
data collection on their premises.
References
1.
Agyemang C, Boatemaa S, Frempong GA, Aikins A.
Metabolic
Syndrome
. Switzerland: Springer International, 2015.
2.
Letamo G. The prevalence of, and factors associated with overweight
and obesity in Botswana.
J Biosoc Sci
2011;
43
: 75–84.
3.
Keetile, M, Navaneetham, K, Letamo, G. Patterns and determinants
of overweight and obesity among adults in Botswana. European
Population Conference 2016, Mainz, Germany, 2016.
4.
Tapera R, Merapelo MT, Tumoyagae T, Maswabi TM, Erick P, Letsholo
B,
et al.
The prevalence and factors associated with overweight and
obesity among University of Botswana students.
Cogent Med
2017;
4
(1): 1357249.
5.
Castro AVB, Kolka CM, Kim S, Bergman RN. Obesity, insulin
resistance and comorbidities – Mechanisms of association.
Arq Bras
Endocrinol Metabol
2014;
58
(6): 600–609.
6.
Vazquez G, Duval S, Jacobs DR, Silventoinen K. Comparison of body
mass index, waist circumference, and waist/hip ratio in predicting inci-
dent diabetes: a meta-analysis.
Epidemiol Rev
2007;
29
: 115–128.
7.
Rahman M, Temple JR, Breitkopf CR, Berenson AB. Racial differences
in body fat distribution among reproductive-aged women.
Metabolism
2009;
58
(9): 1329–1337.
8.
Crowther NJ, Norris SA. The current waist circumference cut point used
for the diagnosis of metabolic syndrome in sub-Saharan African women
is not appropriate.
PLoS One
2012;
7
(11): e48883.
9.
Alberti KG, Zimmet P, Shaw J. Metabolic syndrome – a new world-wide
definition. A Consensus Statement from the International Diabetes
Federation.
Diabet Med
2006;
23
(5): 469–480.
10. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM,
Brunzell JD,
et al
. Intra-abdominal fat is a major determinant of the
National Cholesterol Education Program Adult Treatment Panel III
criteria for the metabolic syndrome.
Diabet Med
2006;
23
(5): 469–480.
11. Molarius A, Seidell JC, Sans S, Tuomilehto J, Kuulasmaa K. Varying
sensitivity of waist action levels to identify subjects with overweight
or obesity in 19 populations of the WHO MONICA Project.
J Clin
Epidemiol
1999;
52
: 1213–1224.
12. Tan CE, Ma S, Wai D, Chew SK. Tai ES. Can we apply the National
Cholesterol Education Program Adult Treatment Panel definition of the
metabolic syndrome to Asians?
Diabetes Care
2000;
27
(5): 1182–1186.
13. Okafor CI. The metabolic syndrome in Africa: Current trends.
Indian J
Endocr Metab
2012;
16
(1): 56–66.
14. Prinsloo J, Malan L, de Ridder JH, Potgieter JC, Steyn HS. Determining
the waist circumference cut-off which best predicts the metabolic
syndrome components in urban Africans: The SABPA Study.
Exp Clin
Endocrinol Diabetes
2011;
119
: 599–603.
15. Omuse G, Maina D, Hoffman M, Mwangi J, Wambua C, Kagotho E,
et al
. Metabolic syndrome and its predictors in an urban population in
Kenya: A cross sectional study.
BMC Endocr Disord
2017;
17
(37).
16. Magalhães P, Capingana DP, Mill JG. Prevalence of the metabolic
syndrome and determination of optimal cut-off values of waist circum-
ference in university employees from Angola.
Cardiovasc J Sth Afr
2014;
25
(1): 27–33.
17. Ibrahim MM, Elamragy AA, Girgis H, Nour MA. Cut-off values of
waist circumference and associated cardiovascular risk in Egyptians.
BMC Cardiovasc Disord
2011;
11
(53).
18. Motala A, Esterhuizen T, Pirie FJ, Omar MAK. The prevalence of
metabolic syndrome and determination of the optimal waist circumfer-
ence cut-off points in a rural South African Community.
Diabetes Care
2011;
34
: 1032–1037.
19. Hoebel S, Malan L, de Ridder JH. Determining ethnic-, gender-, and
age-specific waist circumference cut-off points to predict metabolic
syndrome: the Sympathetic Activity and Ambulatory Blood Pressure
in Africans (SABPA) study.
J Endocrinol Metab Diabetes S Afr
2013;
18
(2): 88–96.
20. United Nations, Department of Economics and Social Affairs,
Population Division (2018). World Urbanization Prospects: the 2018
revison, online edition.
21. Ntandou G, ne Delisle HL, Agueh V, Fayomi B. Physical activity and
socioeconomic status explain rural-urban differences in obesity: a cross-
sectional study in Benin (West Africa).
Ecol Food Nutr
2008;
47
(4):
313–337.