Cardiovascular Journal of Africa: Vol 21 No 2 (March/April 2010) - page 46

CARDIOVASCULAR JOURNAL OF AFRICA • Vol 21, No 2, March/April 2010
108
AFRICA
recruitment in atherogenesis.
Arterioscler Thromb Vasc Biol
2000;
20
:
2094–2099.
Fichtscherer S, Rosmbingr G, Walter DH, Breur S. Elevated C-reactive
29.
protein and improved endothelial reactivity in patents with coronary
artery disease.
Circulation
2000;
102
: 1000–1016.
Venugopalan SK, Devaraj S, Yuhana I, Shaul P. Demonstration that
30.
C-reactive protein decreases eNOS expression and bioactivity in human
aortic endothelial cells.
Circulation
2002;
106
: 1439–1441.
Zwaka TP, Hombach V, Torzewski J. C-reactive protein mediated low
31.
density lipoprotein uptake by macrophages: implications for atheroscle-
rosis.
Circulation
2001;
103
: 1194–1197.
Cermark J, Key N, Bach R, Balla J. C-reactive protein induces human
32.
peripheral blood monocytes to synthesize tissue factor.
Blood
1993;
82
:
513–520.
Buffon A, Biasucci LM, Liuzzo G, D’onofrio G, Crea F, Maseri A.
33.
Widespread coronary inflammation in unstable angina.
N Engl J Med
2002;
347
: 5–12.
Kinjo K, Sato H, Ohnishi Y, Hishida E. Impact of high sensitivity
34.
C-reactive protein on predicting long term mortality of acute myocardial
infarction.
Am J Cardiol
2003;
91
: 931–935.
St Pierre AC, Bergeron J, Pirro M, Cantin B. Effect of plasma C-reactive
35.
protein levels in modulating the risk of coronary heart disease associated
with small dense, low density lipoproteins in men.
Am J Cardiol
2003;
91
: 555–558.
Koenig W. Is hs CRP back on board? Implications from the JUPITER
36.
trial.
Clin Chem
2009;
55
(2): 216–218.
Devraj S, Singh U, Jialal I. The evolving role of C-reactive protein in
37.
atherothrombosis.
Clin Chem
2009;
55
(2): 229–238.
Wang X, Liao D, Bharadwaj U, Li M, Yao Q, Chen C. C-reactive protein
38.
inhibits cholesterol efflux from human macrophage derived foam cells.
Arterioscler Thromb Vasc Biol
2008;
28
: 519–526.
Ridker PM, Rifai N, Pfiffer M, Sacks F. Elevation of tumour necrosis
39.
factor
α
and increased risk of recurrent coronary events after myocardial
infarction.
Circulation
2000;
101
: 2149–2153.
Gotsman I, Stabholz A, Planer D, Pugatsch T, Lapidus L, Novikov Y,
40.
et
al
. Serum cytokine tumor necrosis factor-alpha and interleukin-6 associ-
ated with the severity of coronary artery disease: indicators of an active
inflammatory burden?
Isr Med Assoc J
2008;
10
: 494–498.
Oden M. Tumour necrosis factor
41.
α
as a myocardial depressant substance.
Int J Cardiol
1993;
42
: 231–238.
Pwdil R, Pidrman V, Krejsek J. Gregor J. Cytokines and adhesion
42.
molecules in the course of acute myocardial infarction.
Clin Chem Acta
1999;
280
: 127–134.
Stampfer MJ, Sacks FM, Salvini S, Willett WC. A prospective study of
43.
cholesterol, apolipoprotein and the risk of myocardial infarction.
N Engl
J Med
1991;
325
: 375–381.
Hirschl MM, Gwechenberger M, Binder T, Binder M. Assessment of
44.
myocardial injury by serum tumour necrosis factor alpha measurements
in acute myocardial infarction.
Eur Heart J
1996;
17
: 1852–1859.
Rajappa M, Sen SK, Sharma A.
45.
Role of pro-/anti-inflammatory
cytokines and their correlation with established risk factors in South
Indians with coronary artery disease.
Angiology
2009;
60
: 419–426.
Wojciech K, Roksolana D, Monika PK, Alina O, Walentyna M. Plasma
46.
levels of TNF-
α
, IL-6, and IL-10 and their relationship with left
ventricular diastolic function in patients with stable angina pectoris and
preserved left ventricular systolic performance.
Coron Artery Dis
2008;
19
(6): 375–382.
Goswami B, Rajappa M, Mallika V,
47.
Shukla DK, Kumar S. TNF-
α
/IL-10
ratio and C-reactive protein as markers of the inflammatory response in
CAD-prone North Indian patients with acute myocardial infarction.
Clin
Chim Acta
2009;
408
: 14–18.
Scanu AM. Lipoprotein (a): a genetic risk factor for premature coronary
48.
artery disease
. J Am Med Assoc
1992;
267
: 3326–3329.
Luthra K, Misra A, Srivastava LM. Lipoprotein (a): Biology and role in
49.
atherosclerotic vascular disease.
Curr Sci
1999;
76
: 1553–1560.
Rhoads GG, Dahlen G, Berg K,
50.
et al
. Lipoprotein (a) as a risk factor for
myocardial infarction.
J Am Med Assoc
1986;
256
: 2540–2544.
Rajappa M, Sridhar MG, Balachander J, Sethuraman KR. Lipoprotein
51.
(a) and comprehensive lipid tetrad index as a marker for coronary artery
disease in NIDDM patients in South India.
Clin Chim Acta
2006;
372
:
70–75.
Dahlen G. Lipoprotein (a) in cardiovascular disease: review article and
52.
viewpoint.
Atherosclerosis
1994;
108
: 111–126.
Singh RB, Ghosh S, Niaz MA. Epidemiologic study of diet and coronary
53.
risk factors in relation to central obesity and insulin levels in rural and
urban populations of North India.
Int J Cardiol
1995;
47
: 245–255.
Watts GF, Gwjlym RM, Mazurkiewicz J,
54.
et al
. Independent correlation
between plasma lipoprotein (a) and angiographic coronary artery disease
in NIDDM.
Diabetes Care
1995;
18
: 234–236.
Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM,
55.
et al
. A
study of triglyceride level, low-density lipoprotein particle diameter, and
risk of myocardial infarction.
J Am Med Assoc
1996;
276
: 882–888.
St-Pierre AC, Cantin B, Dagenais GR, Mauriege P, Bernard PM, Despres
56.
JP,
et al
. Low-density lipoprotein subfractions and the long-term risk
of ischemic heart disease in men: 13-year follow-up data from the
Quebec Cardiovascular Study.
Arterioscler Thromb Vasc Biol
2005;
25
:
553–559.
Bjornheden T, Babyi A, Bondjers G, Wiklund O. Accumulation of lipo-
57.
protein fractions and subfractions in the arterial wall, determined in an
in
vitro
perfusion system.
Atherosclerosis
1996;
123
: 43–56.
Tribble DL, Rizzo M, Chait A, Lewis DM, Blanche PJ, Krauss RM.
58.
Enhanced oxidative susceptibility and reduced antioxidant content of
metabolic precursors of small, dense low-density lipoproteins.
Am J Med
2001;
110
: 103–110.
Galeano NF, Al-Haideri M, Keyserman F, Rumsey SC, Deckelbaum
59.
RJ. Small dense low density lipoprotein has increased affinity for LDL
receptor-independent cell surface binding sites: a potential mechanism
for increased atherogenicity.
J Lipid Res
1998;
39
: 1263–1273.
Anuurad E, Rubin J, Chiem A, Tracy RP, Pearson TA, Berglund L. High
60.
levels of inflammatory biomarkers are associated with increased allele-
specific apolipoprotein(a) levels in African-Americans.
J Clin Endocrin
Metabol
2008;
93
(4): 1482–1488.
Goswami B, Mallika V, Rajappa M, Kumar S, Shukla DK. Apo-B/
61.
Apo-A-I ratio: a better discriminator of coronary artery disease risk than
other conventional lipid ratios in Indian patients with acute myocardial
infarction.
Acta Cardiol
2008;
63
: 749–755.
Lamarche B, Despres JP, Moorjani S, Cantin B, Dagenais GR, Lupien
62.
PJ. Prevalence of dyslipidemic phenotypes in ischemic heart disease
(prospective results from the Quebec Cardiovascular study).
Am J
Cardiol
1995;
75
: 1189–1195.
Berglund L, Ramakrishnan R. Lipoprotein (a). An elusive cardiovascu-
63.
lar risk factor.
Arterioscler, Thrombosis, Vasc Biol
2004;
24
: 2219.
Ramharack R, Barkalow D, Spahr MA. Dominant negative effect of
64.
TGF-ß1 and TNF- on basal and IL-6-induced lipoprotein (a) and apoli-
poprotein (a) mRNA expression in primary monkey hepatocyte cultures.
Arterioscler, Thrombosis, Vasc Biol
1998;
18
: 984–990.
Cabana VG, Seigel JN, Sabesin SM. Effect of acute phase response on
65.
the concentration and density distribution of plasma lipids and apolipo-
proteins.
J Lipid Res
1989;
30
: 39–49.
Hardardottir I, Grunfeld C, Feingoid KR. Effects of endotoxin and
66.
cytokines on lipid metabolism.
Curr Opin Lipidol
1994;
5
: 207–215.
Skoog T, Dichtl W, Boguist S. Plasma tumour necrosis factor-alpha and
67.
early carotid atherosclerosis in healthy middle aged men
. Eur Heart J
2002;
23
: 376–383.
Feingold KR, Memon RA, Moser AH, Grunfeld C. Paraoxonase activity
68.
in the serum and hepatic mRNA levels decrease during the acute phase
response.
Atherosclerosis
1998;
139
: 307–315.
Feingold KR, Judy K, Shigenaga LG,
69.
et al.
Infection and inflamma-
tion decrease apolipoprotein M expression.
Atherosclerosis
2008;
199
:
19–26.
Ly H, Franconi OL, Fielding CJ. Endotoxin and TNF lead to reduced
70.
LCAT activity and decreased hepatic LCAT-mRNA levels in Syrian
hamsters.
J Lipid Res
1995;
36
: 1254–1263.
1...,36,37,38,39,40,41,42,43,44,45 47,48,49,50,51,52,53,54,55,56,...64
Powered by FlippingBook