Cardiovascular Journal of Africa: Vol 23 No 10 (November 2012) - page 44

CARDIOVASCULAR JOURNAL OF AFRICA • Vol 23, No 10, November 2012
570
AFRICA
2009;
205
(2): 620–625.
39.
Von Zglinicki T. Oxidative stress shortens telomeres.
Trends Biochem
Sci
2002;
27
: 339–344.
40.
De Meyer T, Rietzschel ER, De Buyzere ML,
et al
.
Systemic telomere
length and preclinical atherosclerosis: the Asklepios Study.
Eur Heart
J
2009;
30
: 3074–3081.
41.
Aviv A. Genetics of leukocyte telomere length and its role in athero-
sclerosis.
Mutat Res: Fundam Mol Mech Mutagen
2012;
730
: 68–74.
42.
De Meyer T, Rietzschel ER, de Buyzere ML, van Criekinge W, Bekaert
S. Telomere length and cardiovascular ageing: The means to the ends?
Ageing Res Rev
2011;
10
: 297–303.
43.
Hunt SC, Chen W, Gardner JP, Kimura M, Srinivasan SR, Eckfeldt JH,
et al
.
Leukocyte telomeres are longer in African Americans than whites:
the National Heart, Lung, and Blood Institute Family Heart Study and
the Bogalusa Heart Study.
Aging Cell
2008;
7
: 451–458.
44.
Zhu H, Wang X, Gutin B, Davis CL, Keeton D, Thomas J,
et al
.
Leukocyte telomere length in healthy Caucasian and African-American
adolescents: relationhips with race, sex, adiposity, adipokines and
physical activity.
J Pediatr
2011;
158
: 215–220.
45.
Nawrot TS, Staessen JA, Gardner JP, Aviv A. Telomere length and
possible link to X chromosome.
Lancet
2004;
363
: 507–510.
46.
Von Zglinicki T, Burkle A, Kirkwood TB. Stress, DNA damage and
aging: an integrative approach.
Exp Gerontol
2001;
36
: 1049–1062.
47.
Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxida-
tive stress.
Ann NY Acad Sci
2004;
1019
: 278–284.
48.
Heineke JW. Oxidants and antioxidants in the pathogenesis of athero-
sclerosis.
Atherosclerosis
1998:
141
: 1–5.
49.
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular disease:
the role of oxidant stress.
Circ Res
2000;
87
: 840–844.
50.
Griendling KK, Sorescu D,
et al
.
NADPH oxidase: role in cardiovascu-
lar biology and disease.
Circ Res
2000;
86
: 494–501.
51.
Sandau K, Pfeilschifter J,
et al
.
The balance between nitric oxide and
superoxide determines apoptotic and necrotic death of rat mesangial
cells.
J Immunol
1997;
158
: 4938–4946.
52.
Brune B, von Knethen A,
et al
.
Nitric oxide: an effector of apoptosis
.
Cell Death Differ
1999;
6
: 969–975.
53.
Vasa M, Breitschopf K, Zeiher AM, Dimmeler S. Nitric oxide activates
telomerase and delays endothelial cell senescence.
Circ Res
2000;
87
:
540–542.
54.
De la Fuente M, Miquel J. An update of the oxidation-inflammation
theory of aging: the involvement of the immune system in oxi-inflamm-
aging.
Curr Pharm Des
2009;
15
: 3003–3026.
55.
Floyd RA, Hensley K, Jaffery F, Maidt L, Robinson K, Pye Q, Stewart
C. Increased oxidative stress brought on by pro-inflammatory cytokines
in neuro-degenerative processes and the protective role of nitrone-based
free radical traps.
Life Sci
1999;
65
: 1893–1899.
56.
Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and
TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation
in alveolar epithelial cells: potential mechanism in gene transcription in
lung inflammation.
Mol Cell Biochem
2002;
234–235
: 239–248.
57.
Beyne-Rauzy O, Prade-Houdellier N, Demur C, Recher C, Aye J,
Laurent G, Mansat-De Mas V. Tumour necrosis factor alpha inhibits
h-TERT gene expression in human myeloid normal and leukemic cells.
Blood
2005;
106
: 3200–3205.
58.
Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis.
Circulation
2002;
105
: 1135–1143.
59.
Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogen-
esis.
Free Radic Biol Med
2000;
28
: 1708–1716.
60.
Klouche M, Gottschling V,
et al
.
Atherogenic properties of enzy-
matically degraded LDL – selective induction of MCP-1 and cytotoxic
effects on human macrophages.
Arterioscler Thromb Vasc Biol
1998;
18
: 1376–1385.
61.
Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated
upregulation of monocyte chemoattractant protein-1 and monocyte
adhesion to human coronary artery endothelial cells.
Circulation
2000;
101
: 2889–2895.
62.
Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease.
Cell Signal
2011;
23
: 1515–1527.
63.
Breitschopf K, Zeiher AM, Dimmeler S. Pro-atherogenic factors induce
telomerase inactivation in endothelial cells through an Akt-dependent
mechanism.
FEBS Lett
2001;
493
: 21–25.
64.
Miyauchi H, Minamino T, Tateno K,
et al.
Akt negatively regulates the
in vitro lifespan of human endothelial cells via a p53/p21-dependent
pathway.
EMBO J
2004;
23
: 212–220.
65.
Rosso A, Balsamo A, Gambino R, Dentelli P,
et al
.
p53 mediates the
accelerated onset of senescence of endothelial progenitor cells in diabe-
tes
.
J Biol Chem
2006;
281
(7): 4339–4347.
66.
Minamino T, Komuro I. Vascular cell senescence in human atheroscle-
rosis.
Int Congress Ser
2004;
1262
: 566–569.
67.
Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ. Telomere
length assessment: Biomarker of chronic oxidative stress?
Free Rad
Biol Med
2008;
44
: 235–246.
68.
Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific
DNA damage by oxidative stress and its role in carcinogenesis and
aging.
Mutat Res
2001;
488
: 65–76.
69.
Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence
by oxidative stress may accelerate telomere shortening.
FEBS Lett
1999;
453
: 365–368.
70.
Von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks
is the major cause of telomere shortening in human fibroblasts.
Free
Rad Biol Med
2000;
28
(1): 64–74.
71.
Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of
single-stranded regions in telomeres of human fibroblasts.
Exp Cell Res
1998;
239
: 152–160.
72.
Wilson WR, Herbert KE, Mistry Y,
et al
.
Blood leucocyte telomere
DNA content predicts vascular telomere DNA content in humans with
and without vascular disease.
Eur Heart J
2008;
29
: 2689–94.
73.
Burke A, Fitzgerald GA. Oxidative stress and smoking-induced vascu-
lar injury.
Prog Cardiovasc Dis
2003;
46
: 79–90.
74.
Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A.
Telomere length inversely correlates with pulse pressure and is highly
familial.
Hypertension
2000;
36
: 195–200.
75.
Benetos A., Gardner JP, Zureik M, Labat C, Xiaobin L, Adamopoulos
C,
et al
.
Short telomeres are associated with increased carotid athero-
sclerosis in hypertensive subjects.
Hypertension
2004;
43
: 182–185.
76.
Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose
tissue.
Clin Endocrinol
2006;
64
(4): 355–365.
77.
Yudkin JS, Kumari M,
et al
.
Inflammation, obesity, stress and coronary
artery disease.
Atherosclerosis
2000;
148
: 209–214.
78.
Baik I, Ascherio A,
et al
.
Adiposity and mortality in men.
Am J
Epidemiol
2000;
152
: 264–271.
79.
Rexode KM, Carey VJ,
et al
.
Abdominal adiposity and coronary heart
disease in women.
J Am Med Assoc
1998;
280
: 1843–1848.
80.
Beltowski I, Wojcicka G, Jamroz A. Leptin decreases plasma paraxo-
nases 1 (PON 1) activity and induces oxidative stress: the possible novel
mechanism for pro-atherogenic effect of chronic hyperleptinaemia.
Atherosclerosis
2003;
170
: 21–29.
81.
Nordfjall I, Elliasson M, Stegmayr B,
et al
.
Telomere length is associ-
ated with obesity parameters but with a gender difference.
Obesity
2008;
16
: 2682–2689.
82.
De Fronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and
atherosclerosis: the missing links. The Claude Bernard lecture 2009.
Diabetologia
2009;
53
: 1270–1287.
83.
Bornfeldt KE, Tabas I. Insulin resistance, hyperglycaemia and athero-
sclerosis.
Cell Metab
2011;
14
: 575–558.
84.
KidoY, Nakae J, Accili D. Clinical review 125: The insulin receptor and
its cellular targets.
J Clin Endocrinol Metab
2001;
86
: 972–979.
85.
Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H, Komuro I. Akt
negatively regulates the
in-vitro
lifespan of human endothelial cells via
a p53/p21-dependent pathway
.
EMBO J
2004;
23
: 212–220.
86.
Cantley LC. The phosphoinositide 3-kinase pathway.
Science
2002;
296
: 1655–1657.
87.
Basta G, Schmidt AM, DeCaterina R. Advanced glycation end products
and vascular inflammation: implications for accelerated atherosclerosis
in diabetes.
Cardiovas Res
2004;
63
: 582–592.
88.
Wendt T, Bucciarelli L, Quet W,
et al
.
Receptor for advanced glyca-
tion end products (RAGE) and vascular inflammation: insights into
the pathogenesis of macrovascular complications in diabetes.
Curr
1...,34,35,36,37,38,39,40,41,42,43 45,46,47,48,49,50,51,52,53,54,...64
Powered by FlippingBook