CARDIOVASCULAR JOURNAL OF AFRICA • Vol 23, No 10, November 2012
AFRICA
569
substantial majority of our young patients is with myocardial
infarction, which carries a worse prognosis than stable CAD,
further contributes to adverse long-term outcomes. Indications
are that revascularisation procedures are not as efficacious in
this population.
The availability of quantitative polymerase chain reaction,
which is a simpler, less labour-intensive and cheaper method
requiring smaller quantities of DNA compared to the standard
method of southern blot analysis, has made it feasible for us to
determine telomere length in our patients.
124,125
The study of telomere dynamics may serve several functions.
Firstly, measuring telomere length in the early years of life may
indicate a genetic predisposition and help target susceptible
individuals. Studies on the genetic contribution to premature
CAD with genome-wide association scans have yielded little
thus far, whereas an assessment of telomere length provides a
more universal insight into the genetics of CAD.
Secondly, telomere length is a measure of cumulative DNA
damage from multiple environmental risk factors over an
individual’s lifespan and is likely a better predictor of CAD
than the currently available risk markers, which are single, point
measurements in time.
Thirdly, although the development and progression of
atherosclerosis occurs over decades, the process is clinically
silent until the manifestation of full-blown disease. The rate of
telomere shortening is accelerated prior to the onset of clinical
disease, so longitudinal assessments of telomere length may be
of predictive value. Finally, novel therapies aimed at delaying
cellular senescence by manipulation of the telomere/telomerase
complex may be of benefit.
References
1.
Lusis AJ. Atherosclerosis.
Natur
e 2000;
407
: 233–241
2.
Minamino T, Komuro I. Vascular cell senescence: contribution to
atherosclerosis.
Circ Res
2007;
100
: 15–26.
3.
MinaminoT, Miyauchi H,YoshidaT, IshidaYHY, Komuro I. Endothelial
cell senescence in human atherosclerosis. Role of telomere in endothe-
lial dysfunction.
Circulation
2002;
105
: 1541–1544.
4.
Serrano AL, Andres V. Telomeres and cardiovascular disease – Does
size matter?
Circ Res
2004;
94
: 575–584.
5.
Burrig KF. The endothelium of advanced atherosclerotic plaques in
humans.
Arterioscler Thromb
1991;
11
: 1678–1689.
6.
Ross R, Wight TN, Strandness E, Thiele B. Human atherosclerosis. Cell
constitution and characteristics of advanced lesions of the superficial
femoral artery.
Am J Pathol
1984;
114
: 79–93.
7.
Willeit P, Willeit J, Brandstatter A, Ehrlenbach S,
et al
.
Cellular aging
reflected by leukocyte telomere length predicts advanced atherosclero-
sis and cardiovascular disease risk.
Arterioscler Thromb Vasc Biol
2010;
30
: 1649–1656.
8.
Blackburn EH. Structure and function of telomeres.
Nature
1991;
350
:
569–573.
9.
Verdun RE, Karlseder J. Replication and protection of telomeres.
Nature
2007;
447
: 924–931.
10.
Blackburn EH. Switching and signalling at the telomere.
Cell
2001;
106
: 661–673.
11.
Edo MD, Andres V. Aging, telomeres and atherosclerosis.
Cardiovasc
Res
2005;
66
: 213–221.
12.
Shay JW, Wright WE. Senescence and immortalization: role of telom-
eres and telomerase.
Carcinogenesis
2005;
26
(5): 867–874.
13.
Blasco MA. Telomeres and cancer: a tale with many endings.
Cur Opin
Genet Develop
2003;
13
: 70–76.
14.
Lin KW. Telomeres, telomerase and tumorigenesis – A review.
Medscape Gen Med
2004;
6
(3): 19.
15.
Samassekou O, Gadji M, Drouin R, Yan J. Sizing the ends: normal
length of human telomeres.
Ann Anat
2010;
192
: 284–291
16.
Brouilette SW, Whittaker A, Stevens SE, van der Harst P,
et al
.
Telomere
length is shorter in healthy offspring of subjects with coronary artery
disease: support for the telomere hypothesis.
Heart
2008;
94
: 422–425.
17.
Dei Cas A, Spigoni V, Franzini L, Preti M,
et al.
Lower endothelial
progenitor cell number, family history of cardiovascular disease and
reduced HDL-cholesterol levels are associated with shorter leukocyte
telomere length in healthy young adults.
Nutr Metabol Cardiovasc Dis
.
doi.org/10.1016/j.numecd.2011.04.005.
18.
Fuster JJ, Andres V. Telomere biology and cardiovascular disease.
Circ
Res
2006;
99
: 1167–1180.
19.
Valdes AM, Andrew T, Gardner JP, Kimura M,
et al.
Obesity, cigarette
smoking, and telomere length in women.
Lancet
2005;
366
: 662–664.
20.
Morla M, Busquets X, Pons J, Sauleda J, MacNee W, Agusti AGN.
Telomere shortening in smokers with and without COPD.
Eur Respir J
2006;
27
: 525–528.
21.
Demissie S, Levy D, Benjamin EJ, Cupples LA,
et al.
Insulin resist-
ance, oxidative stress, hypertension, and leukocyte telomere length in
men from the Framingham Heart Study.
Aging Cell
2006;
5
: 325–330.
22.
Gardner JP, Shengxu L, Srinivasan SR, Wei C,
et al
.
Rise in insulin
resistance is associated with escalated telomere attrition.
Circulation
2005;
111
: 2171–2177.
23.
Adaikalakoteswari A, Balasubramanyam M, Mohan V. Telomere short-
ening occurs in Asian Indian Type 2 diabetic patients.
Diabet Med
2005;
22
: 1151–1156.
24.
Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA.
Monocyte telomere shortening and oxidative DNA damage in type 2
diabetes.
Diabetes Care
2006;
29
: 283–289.
25.
Zee RL, Castonguay AJ, Barton NS, Germer S, Martin M. Mean
leucocyte telomere length shortening and type 2 diabetes mellitus : a
case-control study.
Translational Res
2010;
155
: 166–169.
26.
Salpea KD, Talmud PJ, Cooper JA, Maubaret CG, Stephens JW, Abelak
K, Humphries SE. Association of telomere length with type 2 diabetes,
oxidative stress and UCP2 gene variation.
Atherosclerosis
2010;
209
;
42–50.
27.
Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality
from coronary heart disease in subjects with Type 2 diabetes and in
non-diabetic subjects with and without prior myocardial infarction.
N
Engl J Med
1998;
339
: 229–234.
28.
Pajunen P, Koukkunen H, Ketonen M, Jerkkola T,
et al
.
Myocardial
infarction in diabetic and non-diabetic persons with and without prior
myocardial infarction: the FINAMI Study.
Diabetologia
2005;
48
:
2519–2524.
29.
Seedat YK. Ethnicity, hypertension, coronary heart disease and renal
diseases in South Africa.
Ethn Hlth
1996;
1
(4): 349–57.
30.
Motala AA, Pirie FJ, Gouws E, Amod A, Omar MA. High incidence of
type 2 diabetes mellitus in South African Indians: a 10-year follow-up
study.
Diabet Med
2003;
20
: 23–30.
31.
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: Role
of telomere proteins in end-protection, telomere replication and length
regulation.
Mutat Res: Fundam Mol Mech Mutagen
2011,
doi:10.1016/j.
mrfmmm.2011.08.011.
32.
Palm W, de Lange T. How shelterin protects mammalian telomeres.
A
Rev Genet
2008;
42
: 301–334.
33.
Blasco MA,
et al
.
Mammalian telomeres and telomerase: why they
matter for cancer and aging.
Eur J Cell Biol
2003;
82
: 441–446.
34.
Oeseburg H, de Boer RA., van Gilst WH, van der Harst P. Telomere
biology in healthy aging and disease.
Pflugers Arch
2010;
459
(2):
259–268.
35.
Gilson E, Segal-Bendirdjian E. The telomere story or the triumph of an
open-minded research.
Biochimie
2010;
92
: 321–326.
36.
Saliques S, Zeller M, Lorin J, Lorgis L.
et al
.
Telomere length and
cardiovascular disease.
Arch Cardiovasc Dis
2010;
103
: 454–459.
37.
Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere
elongation in immortal human cells without detectable telomerase
activity.
EMBO J
1995;
14
: 4240–4248.
38.
Chen W, Gardner JP,
et al
.
Leukocyte telomere length is associated
with HDL cholesterol levels: The Bogalusa heart study.
Atherosclerosis