Background Image
Table of Contents Table of Contents
Previous Page  19 / 74 Next Page
Information
Show Menu
Previous Page 19 / 74 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 30, No 2, March/April 2019

AFRICA

85

Conclusion

This study is the first to demonstrate the direct inhibitory

effect of All on the I

Na,Late

current in SHR atrial myocytes in a

concentration-dependent fashion. The underlying mechanisms

may be partially explained by their roles in reducing the sodium

channel window current. This provides, at least in part, a

potential for the application of All in anti-arrhythmia patients.

We thank the members of our laboratories for their insight and technical

support, and also the National Natural Science Foundation of China (grant

no. 81870249, 81671731, 81470542).

References

1.

Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological

mechanisms of atrial fibrillation: a translational appraisal.

Physiol Rev

2011;

91

: 265–325.

2.

Choisy SC, Arberry LA, Hancox JC, James AF. Increased susceptibil-

ity to atrial tachyarrhythmia in spontaneously hypertensive rat hearts.

Hypertension

2007;

49

: 498–505.

3.

Scridon A, Gallet C, Arisha MM, Oréa V, Chapuis B, Li N,

et al

.

Unprovoked atrial tachyarrhythmias in aging spontaneously hyperten-

sive rats: the role of the autonomic nervous system.

Am J Physiol Heart

Circ Physiol

2012;

303

: H386–392.

4.

Parikh A, Patel D, McTiernan CF, Xiang W, Haney J, Yang L,

et al

.

Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte

hypertrophy and increasing conduction velocity and sodium current

in spontaneously hypertensive rat hearts.

Circ Res

2013;

113

: 313–321.

5.

Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling

underlying action potential changes in a canine model of atrial fibrilla-

tion.

Circ Res

1997;

81

: 512–525.

6.

Zhang Y, Wang HM, Wang YZ, Zhang YY, Jin XX, Zhao Y,

et al.

Increment of late sodium currents in the left atrial myocytes and its

potential contribution to increased susceptibility of atrial fibrillation in

castrated male mice.

Heart Rhythm

2017;

14

: 1073–1080.

7.

Justo F, Fuller H, Nearing BD, Rajamani S, Belardinelli L, Verrier RL.

Inhibition of the cardiac late sodium current with eleclazine protects

against ischemia-induced vulnerability to atrial fibrillation and reduces

atrial and ventricular repolarization abnormalities in the absence and

presence of concurrent adrenergic stimulation.

Heart Rhythm

2016;

13

:

1860–1867.

8.

Li Y, Wang S, Liu Y, Li Z, Yang X, Wang H,

et al

. Effect of alpha-

allocryptopine on transient outward potassium current in rabbit ventric-

ular myocytes.

Cardiology

2008;

111

: 229–236.

9.

Liu MH, Li Y, Wen Y, Wang L. The effect of allocryptopine on arrhyth-

mia and monophasic action potential in animal models.

Chin J Mult

Organ Dis Elder

2006;

5

: 48–50.

10. ZhangJ,ChenY,YangJ,XuB,WenY,XiangG,

etal

.Electrophysiological

and trafficking defects of the SCN5A T353I mutation in Brugada

syndrome are rescued by alpha-allocryptopine.

Eur J Pharmacol

2015;

746

: 333–343.

11. Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence,

prognosis, and predisposing conditions for atrial fibrillation: popula-

tion-based estimates.

Am J Cardiol

1998;

82

: 2N–9N.

12. Aksnes TA, Flaa A, Strand A, Kjeldsen SE. Prevention of new-onset

atrial fibrillation and its predictors with angiotensin II-receptor block-

ers in the treatment of hypertension and heart failure.

J Hypertens

2007;

25

(1): 15–23.

13. Maltsev VA, Silverman N, Sabbah HN, Undrovinas AI. Chronic heart

failure slows late sodium current in human and canine ventricular

myocytes: implications for repolarization variability.

Eur J Heart Fail

2007;

9

: 219–27.

14. Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L. Blocking late

sodium current reduces hydrogen peroxide-induced arrhythmogenic activ-

ity and contractile dysfunction.

J Pharmacol Exp Ther

2006;

318

: 214–222.

15. Chang PC, Huang YC, Lee HL, Chang GJ, Chu Y, Wen MS,

et al.

Inhomogeneous downregulation of INa underlies piceatannol proar-

rhythmic mechanism in regional ischemia-reperfusion.

Pacing Clin

Electrophysiol

2018;

41

(9): 1116–1122.

16. Dybkova N, Ahmad S, Pabel S, Tirilomis P, Hartmann N, Fischer TH,

et

al

. Differential regulation of sodium channels as a novel proarrhythmic

mechanism in the human failing heart.

Cardiovasc Res

2018;

114

(13):

1728–1737.

17. Ahmad S, Tirilomis P, Pabel S, Dybkova N, Hartmann N, Molina CE,

et

al.

The functional consequences of sodium channel NaV 1.8 in human

left ventricular hypertrophy.

ESC Heart Fail

2018 Oct 30.

doi: 10.1002/

ehf2.12378.

18. Abe K, Machida T, Sumitomo N, Yamamoto H, Ohkubo K, Watanabe

I,

et al

. Sodium channelopathy underlying familial sick sinus syndrome

with early onset and predominantly male characteristics.

Circ Arrhythm

Electrophysiol

2014;

7

(3): 511–517.

19. Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K,

et

al.

Altered Na(+) currents in atrial fibrillation effects of ranolazine on

arrhythmias and contractility in human atrial myocardium.

J Am Coll

Cardiol

2010;

55

: 2330–2342.

20. Nattel S, Dobrev D. The multidimensional role of calcium in atrial fibrilla-

tion pathophysiology: mechanistic insights and therapeutic opportunities.

Eur Heart J

2012;

33

: 1870–1877.

21. Blana A, Kaese S, Fortmüller L, Laakmann S, Damke D, van Bragt K,

et al

. Knock-in gain-of-function sodium channel mutation prolongs atrial

action potentials and alters atrial vulnerability.

Heart Rhythm

2010;

7

:

1862–1869.

22. Yu S, Li G, Huang CL, Lei M, Wu L. Late sodium current associated

cardiac electrophysiological and mechanical dysfunction.

Pflugers Arch

2018;

470

(3): 461–469.

23. Burashnikov A. Late INa inhibition as an antiarrhythmic strategy.

J

Cardiovasc Pharmacol

2017;

70

(3): 159–167.

24. Ruan Y, Denegri M, Liu N, Bachetti T, Seregni M, Morotti S,

et al

.

Trafficking defects and gating abnormalities of a novel SCN5A mutation

question gene-specific therapy in long QT syndrome type 3.

Circ Res

2010;

106

: 1374–1383.

25. Pezhouman A, Cao H, Fishbein MC, Belardinelli L, Weiss JN,

Karagueuzian HS. Atrial fibrillation initiated by early afterdepolarization-

mediated triggered activity during acute oxidative stress: efficacy of late

sodium current blockade.

J Heart Health

2018;

4

(1). doi: 10.16966/2379-

769X.146.

26. Carneiro JS, Bento AS, Bacic D, Nearing BD, Rajamani S, Belardinelli

L,

et al

. The selective cardiac late sodium current inhibitor GS-458967

suppresses autonomically triggered atrial fibrillation in an intact porcine

model.

J Cardiovasc Electrophysiol

2015;

26

(12): 1364

–136

9.

27. Strege P, Beyder A, Bernard C, Crespo-Diaz R, Behfar A, Terzic A,

et

al.

Ranolazine inhibits shear sensitivity of endogenous Na

+

current and

spontaneous action potentials in HL-1 cells.

Channels

2012;

6

: 457–462.

28. Pignier C, Rougier JS, Vié B, Culié C, Verscheure Y, Vacher B,

et al

.

Selective inhibition of persistent sodium current by F 15845 prevents

ischaemia-induced arrhythmias.

Br J Pharmacol

2010;

161

: 79–91.

29. Xu B, Fu Y, Liu L, Lin K, Zhao X, Zhang Y,

et al

. Effect of

α

-allocryptopine on delayed afterdepolarizations and triggered activi-

ties in mice cardiomyocytes treated with isoproterenol.

Evid Based

Complement Alternat Med

2015;

634172

. doi: 10.1155/2015/634172.