CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 1, January/February 2018
60
AFRICA
682–687.
23. Carabello BA. Progress in mitral and aortic regurgitation.
Prog
Cardiovasc Dis
1988;
43
(6): 457–475.
24. O’Gara P, Sugeng L, Lang R,
et al
. The role of imaging in chronic
degenerative mitral regurgitation.
J Am Coll Cardiol Cardiovasc Imaging
2008;
1
(2): 221–237.
25. Amin P, Singh M, Singh K. Beta-Adrenergic receptor-stimulated cardiac
myocyte apoptosis: role of beta1 integrins.
J Signal Transduct
2011;
2011
: 179057.
26. Chen YW, Pat B, Gladden JD,
et al
. Dynamic molecular and histo-
pathological changes in the extracellular matrix and inflammation in
the transition to heart failure in isolated volume overload.
Am J Physiol
Heart Circ Physiol
2011;
300
(6): H2251–2260.
27. Hutchinson KR, Stewart JA Jr, Lucchesi PA. Extracellular matrix
remodeling during the progression of volume overload-induced heart
failure.
J Mol Cell Cardiol
2010;
48
(3): 564–569.
28. Knoll R, Marston S. On mechanosensation, acto/myosin interaction,
and hypertrophy.
Trends Cardiovasc Med
2012;
22
(1): 17–22.
29. Buyandelger B, Mansfield C, Knoll R. Mechano-signaling in heart fail-
ure.
Pflugers Arch
2014;
466
(6): 1093–1099.
30. Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in
cardiac hypertrophy and failure.
Circ Res
2015;
116
(8): 1462–1476.
31. Israeli-Rosenberg S, Manso AM, Okada H, Ross RS. Integrins and
integrin-associated proteins in the cardiac myocyte.
Circ Res
2014;
114
(3): 572–586.
32. Opie LH BD.
Mechanisms of Cardiac Contraction and Relaxation
. 10th
edn. Philadelphia: Saunders Elsevier, 2015.
33. Miller MK, Granzier H, Ehler E, Gregorio CC. The sensitive giant: the
role of titin-based stretch sensing complexes in the heart.
Trends Cell
Biol
2004;
14
(3): 119–126.
34. Zou P, Pinotsis N, Lange S,
et al
. Palindromic assembly of the giant
muscle protein titin in the sarcomeric Z-disk.
Nature
2006;
439
(7073):
229–233.
35. Knoll R, Hoshijima M, Hoffman HM,
et al
. The cardiac mechanical
stretch sensor machinery involves a Z disc complex that is defective in
a subset of human dilated cardiomyopathy.
Cell
2002;
111
(7): 943–955.
36. Hishiya A, Kitazawa T, Takayama S. BAG3 and Hsc70 interact with
actin capping protein CapZ to maintain myofibrillar integrity under
mechanical stress.
Circ Res
2010;
107
(10): 1220–1231.
37. Kuwahara K, Kinoshita H, Kuwabara Y,
et al
. Myocardin-related
transcription factor A is a common mediator of mechanical stress- and
neurohumoral stimulation-induced cardiac hypertrophic signaling lead-
ing to activation of brain natriuretic peptide gene expression.
Mol Cell
Biol
2010;
30
(17): 4134–4148.
38. Lange S, Xiang F, Yakovenko A,
et al.
The kinase domain of titin
controls muscle gene expression and protein turnover.
Science
2005;
308
(5728): 1599–1603.
39. Wagner MA, Siddiqui MA. The JAK-STAT pathway in hypertrophic
stress signaling and genomic stress response.
Jakstat
2012;
1
(2): 131–141.
40. Puchner EM, Alexandrovich A, Kho AL,
et al
. Mechanoenzymatics of
titin kinase.
Proc Natl Acad Sci USA
2008;
105
(36): 13385–13390.
41. Arber S, Hunter JJ, Ross J Jr,
et al
. MLP-deficient mice exhibit a disrup-
tion of cardiac cytoarchitectural organization, dilated cardiomyopathy,
and heart failure.
Cell
1997;
88
(3): 393–403.
42. Knoll R, Kostin S, Klede S, et al. A common MLP (muscle LIM
protein) variant is associated with cardiomyopathy.
Circ Res
2010;
106
(4): 695–704.
43. Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B. Myocyte
remodeling in response to hypertrophic stimuli requires nucleocytoplas-
mic shuttling of muscle LIM protein.
J Mol Cell Cardiol
2009;
47
(4):
426–435.
44. Wang BW, Hung HF, Chang H, Kuan P, Shyu KG. Mechanical stretch
enhances the expression of resistin gene in cultured cardiomyocytes via
tumor necrosis factor-alpha.
Am J Physiol Heart Circ Physiol
2007;
293
(4): H2305–2312.
45. Chen Y, Pat B, Zheng J,
et al
. Tumor necrosis factor-alpha produced
in cardiomyocytes mediates a predominant myocardial inflammatory
response to stretch in early volume overload.
J Mol Cell Cardiol
2010;
49
(1): 70–78.
46. Wang TL, Yang YH, Chang H, Hung CR. Angiotensin II signals
mechanical stretch-induced cardiac matrix metalloproteinase expression
via JAK-STAT pathway.
J Mol Cell Cardiol
2004;
37
(3): 785–794.
47. Gealekman O, Abassi Z, Rubinstein I, Winaver J, Binah O. Role of
myocardial inducible nitric oxide synthase in contractile dysfunction and
beta-adrenergic hyporesponsiveness in rats with experimental volume-
overload heart failure.
Circulation
2002;
105
(2): 236–243.
48. Baud V, Karin M. Signal transduction by tumor necrosis factor and its
relatives.
Trends Cell Biol
2001;
11
(9): 372–377.
49. Lebrec H, Ponce R, Preston BD, Iles J, Born TL, Hooper M. Tumor
necrosis factor, tumor necrosis factor inhibition, and cancer risk.
Curr
Med Res Opin
2015;
31
(3): 557–574.
50. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation
of protein kinase activity and gene expression by reactive oxygen species
and their role in vascular physiology and pathophysiology.
Arterioscler
Thromb Vasc Biol
2000;
20
(10): 2175–2183.
51. Grote K, Flach I, Luchtefeld M,
et al
. Mechanical stretch enhances
mRNA expression and proenzyme release of matrix metalloproteinase-2
(MMP-2) via NAD(P)H oxidase-derived reactive oxygen species.
Circ
Res
2003;
92
(11): e80–86.
52. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen
synthesis and matrix metalloproteinase activity in cardiac fibroblasts.
Am J Physiol Cell Physiol
2001;
280
(1): C53–60.
53. Birukov KG. Cyclic stretch, reactive oxygen species, and vascular remod-
eling.
Antioxid Redox Signal
2009;
11
(7): 1651–1667.
54. Keith M, Geranmayegan A, Sole MJ,
et al
. Increased oxidative stress
in patients with congestive heart failure.
J Am Coll Cardiol
1998;
31
(6):
1352–1356.
55. Ahmed MI, Gladden JD, Litovsky SH,
et al
. Increased oxidative stress
and cardiomyocyte myofibrillar degeneration in patients with chronic
isolated mitral regurgitation and ejection fraction
>
60%.
J Am Coll
Cardiol
2010;
55
(7): 671–679.
56. Zheng J, Yancey DM, Ahmed MI,
et al
. Increased sarcolipin expression
and adrenergic drive in humans with preserved left ventricular ejection
fraction and chronic isolated mitral regurgitation.
Circulation: Heart
Failure
2014;
7
(1): 194–202.
57. Mann DL. Innate immunity and the failing heart: the cytokine hypoth-
esis revisited.
Circ Res
2015;
116
(7): 1254–1268.
58. Nakano M, Knowlton AA, Dibbs Z, Mann DL. Tumor necrosis factor-
alpha confers resistance to hypoxic injury in the adult mammalian
cardiac myocyte.
Circulation
1998;
97
(14): 1392–1400.
59. Hamid T, Gu Y, Ortines RV,
et al
. Divergent tumor necrosis factor
receptor-related remodeling responses in heart failure: role of nuclear
factor-kappaB and inflammatory activation.
Circulation
2009;
119
(10):
1386–1397.
60. Pagani FD, Baker LS, Hsi C, Knox M, Fink MP, Visner MS. Left
ventricular systolic and diastolic dysfunction after infusion of tumor
necrosis factor-alpha in conscious dogs.
J Clin Invest
1992;
90
(2):
389–398.
61. Franco F, Thomas GD, Giroir B,
et al
. Magnetic resonance imaging and
invasive evaluation of development of heart failure in transgenic mice