Background Image
Table of Contents Table of Contents
Previous Page  62 / 82 Next Page
Information
Show Menu
Previous Page 62 / 82 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 1, January/February 2018

60

AFRICA

682–687.

23. Carabello BA. Progress in mitral and aortic regurgitation.

Prog

Cardiovasc Dis

1988;

43

(6): 457–475.

24. O’Gara P, Sugeng L, Lang R,

et al

. The role of imaging in chronic

degenerative mitral regurgitation.

J Am Coll Cardiol Cardiovasc Imaging

2008;

1

(2): 221–237.

25. Amin P, Singh M, Singh K. Beta-Adrenergic receptor-stimulated cardiac

myocyte apoptosis: role of beta1 integrins.

J Signal Transduct

2011;

2011

: 179057.

26. Chen YW, Pat B, Gladden JD,

et al

. Dynamic molecular and histo-

pathological changes in the extracellular matrix and inflammation in

the transition to heart failure in isolated volume overload.

Am J Physiol

Heart Circ Physiol

2011;

300

(6): H2251–2260.

27. Hutchinson KR, Stewart JA Jr, Lucchesi PA. Extracellular matrix

remodeling during the progression of volume overload-induced heart

failure.

J Mol Cell Cardiol

2010;

48

(3): 564–569.

28. Knoll R, Marston S. On mechanosensation, acto/myosin interaction,

and hypertrophy.

Trends Cardiovasc Med

2012;

22

(1): 17–22.

29. Buyandelger B, Mansfield C, Knoll R. Mechano-signaling in heart fail-

ure.

Pflugers Arch

2014;

466

(6): 1093–1099.

30. Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in

cardiac hypertrophy and failure.

Circ Res

2015;

116

(8): 1462–1476.

31. Israeli-Rosenberg S, Manso AM, Okada H, Ross RS. Integrins and

integrin-associated proteins in the cardiac myocyte.

Circ Res

2014;

114

(3): 572–586.

32. Opie LH BD.

Mechanisms of Cardiac Contraction and Relaxation

. 10th

edn. Philadelphia: Saunders Elsevier, 2015.

33. Miller MK, Granzier H, Ehler E, Gregorio CC. The sensitive giant: the

role of titin-based stretch sensing complexes in the heart.

Trends Cell

Biol

2004;

14

(3): 119–126.

34. Zou P, Pinotsis N, Lange S,

et al

. Palindromic assembly of the giant

muscle protein titin in the sarcomeric Z-disk.

Nature

2006;

439

(7073):

229–233.

35. Knoll R, Hoshijima M, Hoffman HM,

et al

. The cardiac mechanical

stretch sensor machinery involves a Z disc complex that is defective in

a subset of human dilated cardiomyopathy.

Cell

2002;

111

(7): 943–955.

36. Hishiya A, Kitazawa T, Takayama S. BAG3 and Hsc70 interact with

actin capping protein CapZ to maintain myofibrillar integrity under

mechanical stress.

Circ Res

2010;

107

(10): 1220–1231.

37. Kuwahara K, Kinoshita H, Kuwabara Y,

et al

. Myocardin-related

transcription factor A is a common mediator of mechanical stress- and

neurohumoral stimulation-induced cardiac hypertrophic signaling lead-

ing to activation of brain natriuretic peptide gene expression.

Mol Cell

Biol

2010;

30

(17): 4134–4148.

38. Lange S, Xiang F, Yakovenko A,

et al.

The kinase domain of titin

controls muscle gene expression and protein turnover.

Science

2005;

308

(5728): 1599–1603.

39. Wagner MA, Siddiqui MA. The JAK-STAT pathway in hypertrophic

stress signaling and genomic stress response.

Jakstat

2012;

1

(2): 131–141.

40. Puchner EM, Alexandrovich A, Kho AL,

et al

. Mechanoenzymatics of

titin kinase.

Proc Natl Acad Sci USA

2008;

105

(36): 13385–13390.

41. Arber S, Hunter JJ, Ross J Jr,

et al

. MLP-deficient mice exhibit a disrup-

tion of cardiac cytoarchitectural organization, dilated cardiomyopathy,

and heart failure.

Cell

1997;

88

(3): 393–403.

42. Knoll R, Kostin S, Klede S, et al. A common MLP (muscle LIM

protein) variant is associated with cardiomyopathy.

Circ Res

2010;

106

(4): 695–704.

43. Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B. Myocyte

remodeling in response to hypertrophic stimuli requires nucleocytoplas-

mic shuttling of muscle LIM protein.

J Mol Cell Cardiol

2009;

47

(4):

426–435.

44. Wang BW, Hung HF, Chang H, Kuan P, Shyu KG. Mechanical stretch

enhances the expression of resistin gene in cultured cardiomyocytes via

tumor necrosis factor-alpha.

Am J Physiol Heart Circ Physiol

2007;

293

(4): H2305–2312.

45. Chen Y, Pat B, Zheng J,

et al

. Tumor necrosis factor-alpha produced

in cardiomyocytes mediates a predominant myocardial inflammatory

response to stretch in early volume overload.

J Mol Cell Cardiol

2010;

49

(1): 70–78.

46. Wang TL, Yang YH, Chang H, Hung CR. Angiotensin II signals

mechanical stretch-induced cardiac matrix metalloproteinase expression

via JAK-STAT pathway.

J Mol Cell Cardiol

2004;

37

(3): 785–794.

47. Gealekman O, Abassi Z, Rubinstein I, Winaver J, Binah O. Role of

myocardial inducible nitric oxide synthase in contractile dysfunction and

beta-adrenergic hyporesponsiveness in rats with experimental volume-

overload heart failure.

Circulation

2002;

105

(2): 236–243.

48. Baud V, Karin M. Signal transduction by tumor necrosis factor and its

relatives.

Trends Cell Biol

2001;

11

(9): 372–377.

49. Lebrec H, Ponce R, Preston BD, Iles J, Born TL, Hooper M. Tumor

necrosis factor, tumor necrosis factor inhibition, and cancer risk.

Curr

Med Res Opin

2015;

31

(3): 557–574.

50. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation

of protein kinase activity and gene expression by reactive oxygen species

and their role in vascular physiology and pathophysiology.

Arterioscler

Thromb Vasc Biol

2000;

20

(10): 2175–2183.

51. Grote K, Flach I, Luchtefeld M,

et al

. Mechanical stretch enhances

mRNA expression and proenzyme release of matrix metalloproteinase-2

(MMP-2) via NAD(P)H oxidase-derived reactive oxygen species.

Circ

Res

2003;

92

(11): e80–86.

52. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen

synthesis and matrix metalloproteinase activity in cardiac fibroblasts.

Am J Physiol Cell Physiol

2001;

280

(1): C53–60.

53. Birukov KG. Cyclic stretch, reactive oxygen species, and vascular remod-

eling.

Antioxid Redox Signal

2009;

11

(7): 1651–1667.

54. Keith M, Geranmayegan A, Sole MJ,

et al

. Increased oxidative stress

in patients with congestive heart failure.

J Am Coll Cardiol

1998;

31

(6):

1352–1356.

55. Ahmed MI, Gladden JD, Litovsky SH,

et al

. Increased oxidative stress

and cardiomyocyte myofibrillar degeneration in patients with chronic

isolated mitral regurgitation and ejection fraction

>

60%.

J Am Coll

Cardiol

2010;

55

(7): 671–679.

56. Zheng J, Yancey DM, Ahmed MI,

et al

. Increased sarcolipin expression

and adrenergic drive in humans with preserved left ventricular ejection

fraction and chronic isolated mitral regurgitation.

Circulation: Heart

Failure

2014;

7

(1): 194–202.

57. Mann DL. Innate immunity and the failing heart: the cytokine hypoth-

esis revisited.

Circ Res

2015;

116

(7): 1254–1268.

58. Nakano M, Knowlton AA, Dibbs Z, Mann DL. Tumor necrosis factor-

alpha confers resistance to hypoxic injury in the adult mammalian

cardiac myocyte.

Circulation

1998;

97

(14): 1392–1400.

59. Hamid T, Gu Y, Ortines RV,

et al

. Divergent tumor necrosis factor

receptor-related remodeling responses in heart failure: role of nuclear

factor-kappaB and inflammatory activation.

Circulation

2009;

119

(10):

1386–1397.

60. Pagani FD, Baker LS, Hsi C, Knox M, Fink MP, Visner MS. Left

ventricular systolic and diastolic dysfunction after infusion of tumor

necrosis factor-alpha in conscious dogs.

J Clin Invest

1992;

90

(2):

389–398.

61. Franco F, Thomas GD, Giroir B,

et al

. Magnetic resonance imaging and

invasive evaluation of development of heart failure in transgenic mice