CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 1, January/February 2018
AFRICA
63
135. Nagatsu M, Zile MR, Tsutsui H,
et al
. Native beta-adrenergic support
for left ventricular dysfunction in experimental mitral regurgitation
normalizes indexes of pump and contractile function.
Circulation
1994;
89
(2): 818–826.
136. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the
physiological and pathophysiological actions of angiotensin II in vascu-
lar smooth muscle cells.
Pharmacol Rev
2000;
52
(4): 639–672.
137. Schieffer B, Bernstein KE, Marrero MB. The role of tyrosine phos-
phorylation in angiotensin II mediated intracellular signaling and cell
growth.
J Mol Med (Berl)
1996;
74
(2): 85–91.
138. Abe J, Berk BC. Reactive oxygen species as mediators of signal trans-
duction in cardiovascular disease.
Trends Cardiovasc Med
1998;
8
(2):
59–64.
139. Brasch H, Sieroslawski L, Dominiak P. Angiotensin II increases norepi-
nephrine release from atria by acting on angiotensin subtype 1 receptors.
Hypertension
1993;
22
(5): 699–704.
140. Farrell DM, Wei CC, Tallaj J,
et al
. Angiotensin II modulates catecho-
lamine release into interstitial fluid of canine myocardium in vivo.
Am J
Physiol Heart Circ Physiol
2001;
281
(2): H813–822.
141. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates
extracellular matrix protein synthesis through induction of transforming
growth factor-beta expression in rat glomerular mesangial cells.
J Clin
Invest
1994;
93
(6): 2431–2437.
142. Goldsmith EC, Bradshaw AD, Spinale FG. Cellular mechanisms of
tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis:
moving beyond collagen expression.
Am J Physiol Cell Physiol
2013;
304
(5): C393–402.
143. Ryan TD, Rothstein EC, Aban I,
et al
. Left ventricular eccentric remod-
eling and matrix loss are mediated by bradykinin and precede cardio-
myocyte elongation in rats with volume overload.
J Am Coll Cardiol
2007;
49
(7): 811–821.
144. Levine HJ, Gaasch WH. Vasoactive drugs in chronic regurgitant
lesions of the mitral and aortic valves.
J Am Coll Cardiol
1996;
28
(5):
1083–1091.
145. Nemoto S, Hamawaki M, De Freitas G, Carabello BA. Differential
effects of the angiotensin-converting enzyme inhibitor lisinopril versus
the beta-adrenergic receptor blocker atenolol on hemodynamics and left
ventricular contractile function in experimental mitral regurgitation.
J
Am Coll Cardiol
2002;
40
(1): 149–154.
146. Oh SH, Meyers DG. Afterload reduction may halt and beta-adrenergic
blockade may worsen progression of left ventricular dysfunction in
patients with chronic compensated mitral regurgitation: a retrospective
cohort study.
Angiology
2007;
58
(2): 196–202.
147. Woo AY, Xiao RP. Beta-adrenergic receptor subtype signaling in heart:
from bench to bedside.
Acta Pharmacol Sin
2012;
33
(3): 335–341.
148. Belge C, Hammond J, Dubois-Deruy E,
et al
. Enhanced expres-
sion of
β
3-adrenoceptors in cardiac myocytes attenuates neurohor-
mone-induced hypertrophic remodeling through nitric oxide synthase.
Circulation
2014;
129
(4): 451–462.
149. Chidsey CA, Braunwald E, Morrow AG, Mason DT. Myocardial norep-
inephrine concentration in man. Effects of reserpine and of congestive
heart failure.
N Engl J Med
1963;
269
: 653–658.
150. Fowler MB, Bristow MR. Rationale for beta-adrenergic blocking drugs
in cardiomyopathy.
Am J Cardiol
1985;
55
(10): 120d–124d.
151. Bristow MR, Ginsburg R, Minobe W,
et al
. Decreased catecholamine
sensitivity and beta-adrenergic-receptor density in failing human hearts.
N Engl J Med
1982;
307
(4): 205–211.
152. Lowes BD, Minobe W, Abraham WT,
et al
. Changes in gene expression
in the intact human heart. Downregulation of alpha-myosin heavy chain
in hypertrophied, failing ventricular myocardium.
J Clin Invest
1997;
100
(9): 2315–2324.
153. Lowes BD, Gilbert EM, Abraham WT,
et al
. Myocardial gene expres-
sion in dilated cardiomyopathy treated with beta-blocking agents.
N
Engl J Med
2002;
346
(18): 1357–1365.
154. Engelhardt S, Bohm M, Erdmann E, Lohse MJ. Analysis of beta-adren-
ergic receptor mRNA levels in human ventricular biopsy specimens by
quantitative polymerase chain reactions: progressive reduction of beta
1-adrenergic receptor mRNA in heart failure.
J Am Coll Cardiol
1996;
27
(1): 146–154.
155. Hammond HK, Roth DA, Insel PA,
et al.
Myocardial beta-adrenergic
receptor expression and signal transduction after chronic volume-
overload hypertrophy and circulatory congestion.
Circulation
1992;
85
(1): 269–80.
156. Choi DJ, Koch WJ, Hunter JJ, Rockman HA. Mechanism of beta-
adrenergic receptor desensitization in cardiac hypertrophy is increased
beta-adrenergic receptor kinase.
J Biol Chem
1997;
272
(27): 17223–
17229.
157. Osadchii OE, Norton GR, McKechnie R, Deftereos D, Woodiwiss AJ.
Cardiac dilatation and pump dysfunction without intrinsic myocardial
systolic failure following chronic beta-adrenoreceptor activation.
Am J
Physiol Heart Circ Physiol
2007;
292
(4): H1898–1905.
158. Packer M, Fowler MB, Roecker EB,
et al
. Effect of carvedilol on the
morbidity of patients with severe chronic heart failure: results of the
carvedilol prospective randomized cumulative survival (COPERNICUS)
study.
Circulation
2002;
106
(17): 2194–2199.
159. Kohout TA, Takaoka H, McDonald PH,
et al.
Augmentation of cardiac
contractility mediated by the human beta(3)-adrenergic receptor over-
expressed in the hearts of transgenic mice.
Circulation
2001;
104
(20):
2485–2491.
160. Zhao Q, Wu TG, Jiang ZF, Chen GW, Lin Y, Wang LX. Effect of
beta-blockers on beta3-adrenoceptor expression in chronic heart failure.
Cardiovasc Drugs Ther
2007;
21
(2): 85–90.
161. Yue TL, Cheng HY, Lysko PG,
et al.
Carvedilol, a new vasodilator and
beta adrenoceptor antagonist, is an antioxidant and free radical scaven-
ger.
J Pharmacol Exp Ther
1992;
263
(1): 92–98.
162. Ohlstein EH, Douglas SA, Sung CP,
et al
. Carvedilol, a cardiovascular
drug, prevents vascular smooth muscle cell proliferation, migration, and
neointimal formation following vascular injury.
Proc Natl Acad Sci USA
1993;
90
(13): 6189–6193.
163. Wisler JW, DeWire SM, Whalen EJ,
et al
. A unique mechanism of beta-
blocker action: carvedilol stimulates beta-arrestin signaling.
Proc Natl
Acad Sci USA
2007;
104
(42): 16657–16662.
164. Gilbert EM, Abraham WT, Olsen S,
et al
. Comparative hemodynamic,
left ventricular functional, and antiadrenergic effects of chronic treat-
ment with metoprolol versus carvedilol in the failing heart.
Circulation
1996;
94
(11): 2817–2825.
165. Stoschitzky K, Koshucharova G, Zweiker R,
et al
. Differing beta-
blocking effects of carvedilol and metoprolol.
Eur J Heart Fail
2001;
3
(3): 343–349.
166. Quaife RA, Christian PE, Gilbert EM, Datz FL, Volkman K, Bristow
MR. Effects of carvedilol on right ventricular function in chronic heart
failure.
Am J Cardiol
1998;
81
(2): 247–250.
167. Beck-da-Silva L, de Bold A, Davies R,
et al
. Effect of bisoprolol on right
ventricular function and brain natriuretic peptide in patients with heart
failure.
Congest Heart Fail
2004;
10
(3): 127–132.
168. Hongning Y, Stewart RA, Whalley GA. The impact of beta-blockade
on right ventricular function in mitral regurgitation.
Heart Lung Circ
2014;
23
(4): 378–380.
169. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised
trial.
Lancet
1999;
353
(9146): 9–13.