Background Image
Table of Contents Table of Contents
Previous Page  65 / 82 Next Page
Information
Show Menu
Previous Page 65 / 82 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 1, January/February 2018

AFRICA

63

135. Nagatsu M, Zile MR, Tsutsui H,

et al

. Native beta-adrenergic support

for left ventricular dysfunction in experimental mitral regurgitation

normalizes indexes of pump and contractile function.

Circulation

1994;

89

(2): 818–826.

136. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the

physiological and pathophysiological actions of angiotensin II in vascu-

lar smooth muscle cells.

Pharmacol Rev

2000;

52

(4): 639–672.

137. Schieffer B, Bernstein KE, Marrero MB. The role of tyrosine phos-

phorylation in angiotensin II mediated intracellular signaling and cell

growth.

J Mol Med (Berl)

1996;

74

(2): 85–91.

138. Abe J, Berk BC. Reactive oxygen species as mediators of signal trans-

duction in cardiovascular disease.

Trends Cardiovasc Med

1998;

8

(2):

59–64.

139. Brasch H, Sieroslawski L, Dominiak P. Angiotensin II increases norepi-

nephrine release from atria by acting on angiotensin subtype 1 receptors.

Hypertension

1993;

22

(5): 699–704.

140. Farrell DM, Wei CC, Tallaj J,

et al

. Angiotensin II modulates catecho-

lamine release into interstitial fluid of canine myocardium in vivo.

Am J

Physiol Heart Circ Physiol

2001;

281

(2): H813–822.

141. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates

extracellular matrix protein synthesis through induction of transforming

growth factor-beta expression in rat glomerular mesangial cells.

J Clin

Invest

1994;

93

(6): 2431–2437.

142. Goldsmith EC, Bradshaw AD, Spinale FG. Cellular mechanisms of

tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis:

moving beyond collagen expression.

Am J Physiol Cell Physiol

2013;

304

(5): C393–402.

143. Ryan TD, Rothstein EC, Aban I,

et al

. Left ventricular eccentric remod-

eling and matrix loss are mediated by bradykinin and precede cardio-

myocyte elongation in rats with volume overload.

J Am Coll Cardiol

2007;

49

(7): 811–821.

144. Levine HJ, Gaasch WH. Vasoactive drugs in chronic regurgitant

lesions of the mitral and aortic valves.

J Am Coll Cardiol

1996;

28

(5):

1083–1091.

145. Nemoto S, Hamawaki M, De Freitas G, Carabello BA. Differential

effects of the angiotensin-converting enzyme inhibitor lisinopril versus

the beta-adrenergic receptor blocker atenolol on hemodynamics and left

ventricular contractile function in experimental mitral regurgitation.

J

Am Coll Cardiol

2002;

40

(1): 149–154.

146. Oh SH, Meyers DG. Afterload reduction may halt and beta-adrenergic

blockade may worsen progression of left ventricular dysfunction in

patients with chronic compensated mitral regurgitation: a retrospective

cohort study.

Angiology

2007;

58

(2): 196–202.

147. Woo AY, Xiao RP. Beta-adrenergic receptor subtype signaling in heart:

from bench to bedside.

Acta Pharmacol Sin

2012;

33

(3): 335–341.

148. Belge C, Hammond J, Dubois-Deruy E,

et al

. Enhanced expres-

sion of

β

3-adrenoceptors in cardiac myocytes attenuates neurohor-

mone-induced hypertrophic remodeling through nitric oxide synthase.

Circulation

2014;

129

(4): 451–462.

149. Chidsey CA, Braunwald E, Morrow AG, Mason DT. Myocardial norep-

inephrine concentration in man. Effects of reserpine and of congestive

heart failure.

N Engl J Med

1963;

269

: 653–658.

150. Fowler MB, Bristow MR. Rationale for beta-adrenergic blocking drugs

in cardiomyopathy.

Am J Cardiol

1985;

55

(10): 120d–124d.

151. Bristow MR, Ginsburg R, Minobe W,

et al

. Decreased catecholamine

sensitivity and beta-adrenergic-receptor density in failing human hearts.

N Engl J Med

1982;

307

(4): 205–211.

152. Lowes BD, Minobe W, Abraham WT,

et al

. Changes in gene expression

in the intact human heart. Downregulation of alpha-myosin heavy chain

in hypertrophied, failing ventricular myocardium.

J Clin Invest

1997;

100

(9): 2315–2324.

153. Lowes BD, Gilbert EM, Abraham WT,

et al

. Myocardial gene expres-

sion in dilated cardiomyopathy treated with beta-blocking agents.

N

Engl J Med

2002;

346

(18): 1357–1365.

154. Engelhardt S, Bohm M, Erdmann E, Lohse MJ. Analysis of beta-adren-

ergic receptor mRNA levels in human ventricular biopsy specimens by

quantitative polymerase chain reactions: progressive reduction of beta

1-adrenergic receptor mRNA in heart failure.

J Am Coll Cardiol

1996;

27

(1): 146–154.

155. Hammond HK, Roth DA, Insel PA,

et al.

Myocardial beta-adrenergic

receptor expression and signal transduction after chronic volume-

overload hypertrophy and circulatory congestion.

Circulation

1992;

85

(1): 269–80.

156. Choi DJ, Koch WJ, Hunter JJ, Rockman HA. Mechanism of beta-

adrenergic receptor desensitization in cardiac hypertrophy is increased

beta-adrenergic receptor kinase.

J Biol Chem

1997;

272

(27): 17223–

17229.

157. Osadchii OE, Norton GR, McKechnie R, Deftereos D, Woodiwiss AJ.

Cardiac dilatation and pump dysfunction without intrinsic myocardial

systolic failure following chronic beta-adrenoreceptor activation.

Am J

Physiol Heart Circ Physiol

2007;

292

(4): H1898–1905.

158. Packer M, Fowler MB, Roecker EB,

et al

. Effect of carvedilol on the

morbidity of patients with severe chronic heart failure: results of the

carvedilol prospective randomized cumulative survival (COPERNICUS)

study.

Circulation

2002;

106

(17): 2194–2199.

159. Kohout TA, Takaoka H, McDonald PH,

et al.

Augmentation of cardiac

contractility mediated by the human beta(3)-adrenergic receptor over-

expressed in the hearts of transgenic mice.

Circulation

2001;

104

(20):

2485–2491.

160. Zhao Q, Wu TG, Jiang ZF, Chen GW, Lin Y, Wang LX. Effect of

beta-blockers on beta3-adrenoceptor expression in chronic heart failure.

Cardiovasc Drugs Ther

2007;

21

(2): 85–90.

161. Yue TL, Cheng HY, Lysko PG,

et al.

Carvedilol, a new vasodilator and

beta adrenoceptor antagonist, is an antioxidant and free radical scaven-

ger.

J Pharmacol Exp Ther

1992;

263

(1): 92–98.

162. Ohlstein EH, Douglas SA, Sung CP,

et al

. Carvedilol, a cardiovascular

drug, prevents vascular smooth muscle cell proliferation, migration, and

neointimal formation following vascular injury.

Proc Natl Acad Sci USA

1993;

90

(13): 6189–6193.

163. Wisler JW, DeWire SM, Whalen EJ,

et al

. A unique mechanism of beta-

blocker action: carvedilol stimulates beta-arrestin signaling.

Proc Natl

Acad Sci USA

2007;

104

(42): 16657–16662.

164. Gilbert EM, Abraham WT, Olsen S,

et al

. Comparative hemodynamic,

left ventricular functional, and antiadrenergic effects of chronic treat-

ment with metoprolol versus carvedilol in the failing heart.

Circulation

1996;

94

(11): 2817–2825.

165. Stoschitzky K, Koshucharova G, Zweiker R,

et al

. Differing beta-

blocking effects of carvedilol and metoprolol.

Eur J Heart Fail

2001;

3

(3): 343–349.

166. Quaife RA, Christian PE, Gilbert EM, Datz FL, Volkman K, Bristow

MR. Effects of carvedilol on right ventricular function in chronic heart

failure.

Am J Cardiol

1998;

81

(2): 247–250.

167. Beck-da-Silva L, de Bold A, Davies R,

et al

. Effect of bisoprolol on right

ventricular function and brain natriuretic peptide in patients with heart

failure.

Congest Heart Fail

2004;

10

(3): 127–132.

168. Hongning Y, Stewart RA, Whalley GA. The impact of beta-blockade

on right ventricular function in mitral regurgitation.

Heart Lung Circ

2014;

23

(4): 378–380.

169. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised

trial.

Lancet

1999;

353

(9146): 9–13.