Background Image
Table of Contents Table of Contents
Previous Page  64 / 82 Next Page
Information
Show Menu
Previous Page 64 / 82 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 1, January/February 2018

62

AFRICA

98. Lovelock JD, Baker AH, Gao F, et al. Heterogeneous effects of tissue

inhibitors of matrix metalloproteinases on cardiac fibroblasts.

Am J

Physiol Heart Circ Physiol

2005;

288

(2): H461–468.

99. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation

of matrix metalloproteinases: an overview.

Mol Cell Biochem

2003;

253

(1–2): 269–285.

100. Vincenti MP, Brinckerhoff CE. Signal transduction and cell-type specif-

ic regulation of matrix metalloproteinase gene expression: can MMPs be

good for you?

J Cell Physiol

2007;

213

(2): 355–364.

101. Klein T, Bischoff R. Physiology and pathophysiology of matrix metal-

loproteases.

Amino Acids

2011;

41

(2): 271–290.

102. Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor

necrosis factor-alpha decrease collagen synthesis and increase matrix

metalloproteinase activity in cardiac fibroblasts in vitro.

Circ Res

2000;

86

(12): 1259–1265.

103. MacKenna DA, Dolfi F, Vuori K, Ruoslahti E. Extracellular signal-

regulated kinase and c-Jun NH2-terminal kinase activation by mechani-

cal stretch is integrin-dependent and matrix-specific in rat cardiac

fibroblasts.

J Clin Invest

1998;

101

(2): 301–310.

104. MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors

in modulating cardiac fibroblast function and extracellular matrix

synthesis.

Cardiovasc Res

2000;

46

(2): 257–263.

105. Manso AM, Elsherif L, Kang SM, Ross RS. Integrins, membrane-type

matrix metalloproteinases and ADAMs: potential implications for

cardiac remodeling.

Cardiovasc Res

2006;

69

(3): 574–584.

106. Ross RS. The extracellular connections: the role of integrins in myocar-

dial remodeling.

J Card Fail

2002;

8

(6 Suppl): S326–331.

107. Coker ML, Jolly JR, Joffs C,

et al

. Matrix metalloproteinase expression

and activity in isolated myocytes after neurohormonal stimulation.

Am

J Physiol Heart Circ Physiol

2001;

281

(2): H543–551.

108. Sabri A, Rafiq K, Seqqat R, Kolpakov MA, Dillon R, Dell’italia LJ.

Sympathetic activation causes focal adhesion signaling alteration in

early compensated volume overload attributable to isolated mitral regur-

gitation in the dog.

Circ Res

2008;

102

(9): 1127–1136.

109. Ogawa K, Chen F, Kuang C, Chen Y. Suppression of matrix metallopro-

teinase-9 transcription by transforming growth factor-beta is mediated

by a nuclear factor-kappaB site.

Biochem J

2004;

381

(Pt 2): 413–422.

110. Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C. Angiotensin II

induces nuclear factor- kappa B activation in cultured neonatal rat

cardiomyocytes through protein kinase C signaling pathway.

J Mol Cell

Cardiol

2000;

32

(10): 1767–1778.

111. Seeland U, Haeuseler C, Hinrichs R,

et al

. Myocardial fibrosis in

transforming growth factor-beta(1) (TGF-beta(1)) transgenic mice is

associated with inhibition of interstitial collagenase.

Eur J Clin Invest

2002;

32

(5): 295–303.

112. Bujak M, Frangogiannis NG. The role of TGF-beta signaling in

myocardial infarction and cardiac remodeling.

Cardiovasc Res

2007;

74

(2): 184–195.

113. Zheng J, Chen Y, Pat B,

et al

. Microarray identifies extensive downregu-

lation of noncollagen extracellular matrix and profibrotic growth factor

genes in chronic isolated mitral regurgitation in the dog.

Circulation

2009;

119

(15): 2086–2095.

114. Zhang YM, Bo J, Taffet GE,

et al

. Targeted deletion of ROCK1 protects

the heart against pressure overload by inhibiting reactive fibrosis.

FASEB J

2006;

20

(7): 916–125.

115. Jellis C, Martin J, Narula J, Marwick TH. Assessment of nonischemic

myocardial fibrosis.

J Am Coll Cardiol

2010;

56

(2): 89–97.

116. Dell’Italia LJ, Meng QC, Balcells E,

et al

. Increased ACE and chymase-

like activity in cardiac tissue of dogs with chronic mitral regurgitation.

Am J Physiol

1995;

269

(6 Pt 2): H2065–2073.

117. Stewart JA, Jr., Wei CC, Brower GL,

et al

. Cardiac mast cell- and

chymase-mediated matrix metalloproteinase activity and left ventricular

remodeling in mitral regurgitation in the dog.

J Mol Cell Cardiol

2003;

35

(3): 311–319.

118. Tallaj J, Wei CC, Hankes GH,

et al

. Beta1-adrenergic receptor blockade

attenuates angiotensin II-mediated catecholamine release into the cardi-

ac interstitium in mitral regurgitation.

Circulation

2003;

108

(2): 225–230.

119. Lin A, Stewart R. Medical treatment of asymptomatic chronic aortic

regurgitation.

Expert Rev Cardiovasc Ther

2011;

9

(9): 1249–1254.

120. Weidemann F, Herrmann S, Stork S,

et al

. Impact of myocardial fibrosis

in patients with symptomatic severe aortic stenosis.

Circulation

2009;

120

(7): 577–584.

121. Weinberg EO, Schoen FJ, George D,

et al

. Angiotensin-converting

enzyme inhibition prolongs survival and modifies the transition to heart

failure in rats with pressure overload hypertrophy due to ascending

aortic stenosis.

Circulation

1994;

90

(3): 1410–1422.

122. Perry GJ, Wei CC, Hankes GH,

et al

. Angiotensin II receptor blockade

does not improve left ventricular function and remodeling in suba-

cute mitral regurgitation in the dog.

J Am Coll Cardiol

2002;

39

(8):

1374–1379.

123. Babbitt CJ, Shai SY, Harpf AE, Pham CG, Ross RS. Modulation of

integrins and integrin signaling molecules in the pressure-loaded murine

ventricle.

Histochem Cell Biol

2002;

118

(6): 431–439.

124. Bloor CM, Nimmo L, McKirnan MD, Zhang Y, White FC. Increased

gene expression of plasminogen activators and inhibitors in left ventric-

ular hypertrophy.

Mol Cell Biochem

1997;

176

(1–2): 265–71.

125. Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS.

Cause and effect relationship between myocardial mast cell number and

matrix metalloproteinase activity.

Am J Physiol Heart Circ Physiol

2002;

283

(2): H518–525.

126. Janicki JS, Brower GL, Gardner JD,

et al.

Cardiac mast cell regulation

of matrix metalloproteinase-related ventricular remodeling in chronic

pressure or volume overload.

Cardiovasc Res

2006;

69

(3): 657–665.

127. Nagatomo Y, Carabello BA, Coker ML,

et al

. Differential effects of

pressure or volume overload on myocardial MMP levels and inhibitory

control.

Am J Physiol Heart Circ Physiol

2000;

278

(1): H151–161.

128. Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix

metalloproteinase inhibition on ventricular remodeling due to volume

overload.

Circulation

2002;

105

(16): 1983–1988.

129. Ljungvall I, Rajamaki MM, Crosara S,

et al.

Evaluation of plasma

activity of matrix metalloproteinase-2 and -9 in dogs with myxomatous

mitral valve disease.

Am J Vet Res

2011;

72

(8): 1022–1028.

130. Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S.

Excessive activation of matrix metalloproteinases coincides with left

ventricular remodeling during transition from hypertrophy to heart

failure in hypertensive rats.

J Am Coll Cardiol

2002;

39

(8): 1384–1391.

131. Moustafa SE, Kansal M, Alharthi M, Deng Y, Chandrasekaran K,

Mookadam F. Prediction of incipient left ventricular dysfunction in

patients with chronic primary mitral regurgitation: a velocity vector

imaging study.

EurJ Echocardiogr

2011;

12

(4): 291–298.

132. Magne J, Mahjoub H, Dulgheru R, Pibarot P, Pierard LA, Lancellotti

P. Left ventricular contractile reserve in asymptomatic primary mitral

regurgitation.

Eur Heart J

2014;

35

(24): 1608–1616.

133. Le Tourneau T, de Groote P, Millaire A,

et al.

Effect of mitral valve

surgery on exercise capacity, ventricular ejection fraction and neurohor-

monal activation in patients with severe mitral regurgitation.

J Am Coll

Cardiol

2000;

36

(7): 2263–2269.

134. Mehta RH, Supiano MA, Oral H,

et al

. Compared with control

subjects, the systemic sympathetic nervous system is activated in patients

with mitral regurgitation.

Am Heart J

2003;

145

(6): 1078–1085.