CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 1, January/February 2018
AFRICA
61
with myocardial expression of tumor necrosis factor-alpha.
Circulation
1999;
99
(3): 448–454.
62. Krown KA, Page MT, Nguyen C,
et al
. Tumor necrosis factor alpha-
induced apoptosis in cardiac myocytes. Involvement of the sphin-
golipid signaling cascade in cardiac cell death.
J Clin Invest
1996;
98
(12):
2854–2865.
63. Haudek SB, Taffet GE, Schneider MD, Mann DL. TNF provokes
cardiomyocyte apoptosis and cardiac remodeling through activation
of multiple cell death pathways.
J Clin Invest
2007;
117
(9): 2692–2701.
64. Dhingra S, Bagchi AK, Ludke AL, Sharma AK, Singal PK. Akt regu-
lates IL-10 mediated suppression of TNF-alpha-induced cardiomyocyte
apoptosis by upregulating Stat3 phosphorylation.
PLoS One
2011;
6
(9):
e25009.
65. Engel D, Peshock R, Armstong RC, Sivasubramanian N, Mann DL.
Cardiac myocyte apoptosis provokes adverse cardiac remodeling in
transgenic mice with targeted TNF overexpression.
Am J Physiol Heart
Circ Physiol
2004;
287
(3): H1303–1311.
66. Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK. IL-10 attenu-
ates TNF-alpha-induced NF kappaB pathway activation and cardio-
myocyte apoptosis.
Cardiovasc Res
2009;
82
(1): 59–66.
67. Sivasubramanian N, Coker ML, Kurrelmeyer KM,
et al
. Left ventricu-
lar remodeling in transgenic mice with cardiac restricted overexpression
of tumor necrosis factor.
Circulation
2001;
104
(7): 826–831.
68. Diwan A, Dibbs Z, Nemoto S,
et al
. Targeted overexpression of
noncleavable and secreted forms of tumor necrosis factor provokes
disparate cardiac phenotypes.
Circulation
2004;
109
(2): 262–268.
69. Levick SP, Gardner JD, Holland M, Hauer-Jensen M, Janicki JS,
Brower GL. Protection from adverse myocardial remodeling secondary
to chronic volume overload in mast cell deficient rats.
J Mol Cell Cardiol
2008;
45
(1): 56–61.
70. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating
levels of tumor necrosis factor in severe chronic heart failure.
N Engl J
Med
1990;
323
(4): 236–241.
71. Kapadia SR, Yakoob K, Nader S, Thomas JD, Mann DL, Griffin BP.
Elevated circulating levels of serum tumor necrosis factor-alpha in
patients with hemodynamically significant pressure and volume over-
load.
J Am Coll Cardiol
2000;
36
(1): 208–212.
72. Sliwa K, Skudicky D, Bergemann A, Candy G, Puren A, Sareli P.
Peripartum cardiomyopathy: analysis of clinical outcome, left ventricu-
lar function, plasma levels of cytokines and Fas/APO-1.
J Am Coll
Cardiol
2000;
35
(3): 701–705.
73. Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of
heart disease.
Arch Immunol Ther Exp (Warsz)
2009;
57
(3): 165–176.
74. Palmieri EA, Benincasa G, Di Rella F,
et al
. Differential expression of
TNF-alpha, IL-6, and IGF-1 by graded mechanical stress in normal rat
myocardium.
Am J Physiol Heart Circ Physiol
2002;
282
(3): H926–934.
75. Oral H, Sivasubramanian N, Dyke DB,
et al.
Myocardial proinflamma-
tory cytokine expression and left ventricular remodeling in patients with
chronic mitral regurgitation.
Circulation
2003;
107
(6): 831–837.
76. Spina GS, Tarasoutchi F, Sampaio RO,
et al
. Neurohormonal profile
of rheumatic patients with significant chronic aortic regurgitation.
Arq
Bras Cardiol
2009;
92
(2): 143-56.
77. Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte
cell death.
J Clin Invest
1995;
96
(5): 2247–2259.
78. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine
stimulates apoptosis in adult rat ventricular myocytes by activation of
the beta-adrenergic pathway.
Circulation
1998;
98
(13): 1329–1334.
79. Geng YJ, Ishikawa Y, Vatner DE,
et al.
Apoptosis of cardiac myocytes
in Gsalpha transgenic mice.
Circ Res
1999;
84
(1): 34–42.
80. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system
in heart failure: pathophysiology and therapy.
Circ Res
2013;
113
(6):
739–753.
81. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca
2+
in toxic
cell killing.
Trends Pharmacol Sci
1989;
10
(7): 281–285.
82. Mulieri LA, Tischler MD, Martin BJ,
et al
. Regional differences in the
force-frequency relation of human left ventricular myocardium in mitral
regurgitation: implications for ventricular shape.
Am J Physiol Heart
Circ Physiol
2005;
288
(5): H2185–2191.
83. Gupta RC, Mishra S, Mishima T, Goldstein S, Sabbah HN. Reduced
sarcoplasmic reticulum Ca(2+)-uptake and expression of phospholam-
ban in left ventricular myocardium of dogs with heart failure.
J Mol Cell
Cardiol
1999;
31
(7): 1381–1389.
84. Sabbah HN. Biologic rationale for the use of beta-blockers in the treat-
ment of heart failure.
Heart Fail Rev
2004;
9
(2): 91–97.
85. Leszek P, Korewicki J, Klisiewicz A,
et al.
Reduced myocardial expres-
sion of calcium handling protein in patients with severe chronic mitral
regurgitation.
Eur J Cardiothorac Surg
2006;
30
(5): 737–743.
86. Dorn GW, 2nd. Apoptotic and non-apoptotic programmed cardio-
myocyte death in ventricular remodelling.
Cardiovasc Res
2009;
81
(3):
465–473.
87. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart.
J Clin
Invest
2005;
115
(3): 565–571.
88. Remondino A, Kwon SH, Communal C,
et al
. Beta-adrenergic receptor-
stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen
species/c-Jun NH2-terminal kinase-dependent activation of the mito-
chondrial pathway.
Circ Res
2003;
92
(2): 136-8.
89. Hankes GH, Ardell JL, Tallaj J,
et al
. Beta1-adrenoceptor blockade
mitigates excessive norepinephrine release into cardiac interstitium
in mitral regurgitation in dog.
Am J Physiol Heart Circ Physiol
2006;
291
(1): H147–151.
90. Tsutsui H, Spinale FG, Nagatsu M,
et al
. Effects of chronic beta-adren-
ergic blockade on the left ventricular and cardiocyte abnormalities of
chronic canine mitral regurgitation.
J Clin Invest
1994;
93
(6): 2639–2648.
91. Janicki JS, Brower GL. The role of myocardial fibrillar collagen in
ventricular remodeling and function.
J Card Fail
2002;
8
(6 Suppl):
S319–325.
92. Spinale FG. Myocardial matrix remodeling and the matrix metallo-
proteinases: influence on cardiac form and function.
Physiol Rev
2007;
87
(4): 1285–1342.
93. Spinale FG, Coker ML, Heung LJ,
et al
. A matrix metalloproteinase
induction/activation system exists in the human left ventricular myocar-
dium and is upregulated in heart failure.
Circulation
2000;
102
(16):
1944–1949.
94. King MK, Coker ML, Goldberg A,
et al.
Selective matrix metallopro-
teinase inhibition with developing heart failure: effects on left ventricu-
lar function and structure.
Circ Res
2003;
92
(2): 177–185.
95. Ahmed SH, Clark LL, Pennington WR,
et al
. Matrix metalloproteinas-
es/tissue inhibitors of metalloproteinases: relationship between changes
in proteolytic determinants of matrix composition and structural,
functional, and clinical manifestations of hypertensive heart disease.
Circulation
2006;
113
(17): 2089–2096.
96. George J, Patal S, Wexler D, Roth A, Sheps D, Keren G. Circulating
matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix
metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts
outcome in patients with congestive heart failure.
Am Heart J
2005;
150
(3): 484–487.
97. Buralli S, Dini FL, Ballo P,
et al
. Circulating matrix metalloprotein-
ase-3 and metalloproteinase-9 and tissue Doppler measures of diastolic
dysfunction to risk stratify patients with systolic heart failure.
Am J
Cardiol
2010;
105
(6): 853–856.