Background Image
Table of Contents Table of Contents
Previous Page  63 / 82 Next Page
Information
Show Menu
Previous Page 63 / 82 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 1, January/February 2018

AFRICA

61

with myocardial expression of tumor necrosis factor-alpha.

Circulation

1999;

99

(3): 448–454.

62. Krown KA, Page MT, Nguyen C,

et al

. Tumor necrosis factor alpha-

induced apoptosis in cardiac myocytes. Involvement of the sphin-

golipid signaling cascade in cardiac cell death.

J Clin Invest

1996;

98

(12):

2854–2865.

63. Haudek SB, Taffet GE, Schneider MD, Mann DL. TNF provokes

cardiomyocyte apoptosis and cardiac remodeling through activation

of multiple cell death pathways.

J Clin Invest

2007;

117

(9): 2692–2701.

64. Dhingra S, Bagchi AK, Ludke AL, Sharma AK, Singal PK. Akt regu-

lates IL-10 mediated suppression of TNF-alpha-induced cardiomyocyte

apoptosis by upregulating Stat3 phosphorylation.

PLoS One

2011;

6

(9):

e25009.

65. Engel D, Peshock R, Armstong RC, Sivasubramanian N, Mann DL.

Cardiac myocyte apoptosis provokes adverse cardiac remodeling in

transgenic mice with targeted TNF overexpression.

Am J Physiol Heart

Circ Physiol

2004;

287

(3): H1303–1311.

66. Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK. IL-10 attenu-

ates TNF-alpha-induced NF kappaB pathway activation and cardio-

myocyte apoptosis.

Cardiovasc Res

2009;

82

(1): 59–66.

67. Sivasubramanian N, Coker ML, Kurrelmeyer KM,

et al

. Left ventricu-

lar remodeling in transgenic mice with cardiac restricted overexpression

of tumor necrosis factor.

Circulation

2001;

104

(7): 826–831.

68. Diwan A, Dibbs Z, Nemoto S,

et al

. Targeted overexpression of

noncleavable and secreted forms of tumor necrosis factor provokes

disparate cardiac phenotypes.

Circulation

2004;

109

(2): 262–268.

69. Levick SP, Gardner JD, Holland M, Hauer-Jensen M, Janicki JS,

Brower GL. Protection from adverse myocardial remodeling secondary

to chronic volume overload in mast cell deficient rats.

J Mol Cell Cardiol

2008;

45

(1): 56–61.

70. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating

levels of tumor necrosis factor in severe chronic heart failure.

N Engl J

Med

1990;

323

(4): 236–241.

71. Kapadia SR, Yakoob K, Nader S, Thomas JD, Mann DL, Griffin BP.

Elevated circulating levels of serum tumor necrosis factor-alpha in

patients with hemodynamically significant pressure and volume over-

load.

J Am Coll Cardiol

2000;

36

(1): 208–212.

72. Sliwa K, Skudicky D, Bergemann A, Candy G, Puren A, Sareli P.

Peripartum cardiomyopathy: analysis of clinical outcome, left ventricu-

lar function, plasma levels of cytokines and Fas/APO-1.

J Am Coll

Cardiol

2000;

35

(3): 701–705.

73. Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of

heart disease.

Arch Immunol Ther Exp (Warsz)

2009;

57

(3): 165–176.

74. Palmieri EA, Benincasa G, Di Rella F,

et al

. Differential expression of

TNF-alpha, IL-6, and IGF-1 by graded mechanical stress in normal rat

myocardium.

Am J Physiol Heart Circ Physiol

2002;

282

(3): H926–934.

75. Oral H, Sivasubramanian N, Dyke DB,

et al.

Myocardial proinflamma-

tory cytokine expression and left ventricular remodeling in patients with

chronic mitral regurgitation.

Circulation

2003;

107

(6): 831–837.

76. Spina GS, Tarasoutchi F, Sampaio RO,

et al

. Neurohormonal profile

of rheumatic patients with significant chronic aortic regurgitation.

Arq

Bras Cardiol

2009;

92

(2): 143-56.

77. Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte

cell death.

J Clin Invest

1995;

96

(5): 2247–2259.

78. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine

stimulates apoptosis in adult rat ventricular myocytes by activation of

the beta-adrenergic pathway.

Circulation

1998;

98

(13): 1329–1334.

79. Geng YJ, Ishikawa Y, Vatner DE,

et al.

Apoptosis of cardiac myocytes

in Gsalpha transgenic mice.

Circ Res

1999;

84

(1): 34–42.

80. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system

in heart failure: pathophysiology and therapy.

Circ Res

2013;

113

(6):

739–753.

81. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca

2+

in toxic

cell killing.

Trends Pharmacol Sci

1989;

10

(7): 281–285.

82. Mulieri LA, Tischler MD, Martin BJ,

et al

. Regional differences in the

force-frequency relation of human left ventricular myocardium in mitral

regurgitation: implications for ventricular shape.

Am J Physiol Heart

Circ Physiol

2005;

288

(5): H2185–2191.

83. Gupta RC, Mishra S, Mishima T, Goldstein S, Sabbah HN. Reduced

sarcoplasmic reticulum Ca(2+)-uptake and expression of phospholam-

ban in left ventricular myocardium of dogs with heart failure.

J Mol Cell

Cardiol

1999;

31

(7): 1381–1389.

84. Sabbah HN. Biologic rationale for the use of beta-blockers in the treat-

ment of heart failure.

Heart Fail Rev

2004;

9

(2): 91–97.

85. Leszek P, Korewicki J, Klisiewicz A,

et al.

Reduced myocardial expres-

sion of calcium handling protein in patients with severe chronic mitral

regurgitation.

Eur J Cardiothorac Surg

2006;

30

(5): 737–743.

86. Dorn GW, 2nd. Apoptotic and non-apoptotic programmed cardio-

myocyte death in ventricular remodelling.

Cardiovasc Res

2009;

81

(3):

465–473.

87. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart.

J Clin

Invest

2005;

115

(3): 565–571.

88. Remondino A, Kwon SH, Communal C,

et al

. Beta-adrenergic receptor-

stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen

species/c-Jun NH2-terminal kinase-dependent activation of the mito-

chondrial pathway.

Circ Res

2003;

92

(2): 136-8.

89. Hankes GH, Ardell JL, Tallaj J,

et al

. Beta1-adrenoceptor blockade

mitigates excessive norepinephrine release into cardiac interstitium

in mitral regurgitation in dog.

Am J Physiol Heart Circ Physiol

2006;

291

(1): H147–151.

90. Tsutsui H, Spinale FG, Nagatsu M,

et al

. Effects of chronic beta-adren-

ergic blockade on the left ventricular and cardiocyte abnormalities of

chronic canine mitral regurgitation.

J Clin Invest

1994;

93

(6): 2639–2648.

91. Janicki JS, Brower GL. The role of myocardial fibrillar collagen in

ventricular remodeling and function.

J Card Fail

2002;

8

(6 Suppl):

S319–325.

92. Spinale FG. Myocardial matrix remodeling and the matrix metallo-

proteinases: influence on cardiac form and function.

Physiol Rev

2007;

87

(4): 1285–1342.

93. Spinale FG, Coker ML, Heung LJ,

et al

. A matrix metalloproteinase

induction/activation system exists in the human left ventricular myocar-

dium and is upregulated in heart failure.

Circulation

2000;

102

(16):

1944–1949.

94. King MK, Coker ML, Goldberg A,

et al.

Selective matrix metallopro-

teinase inhibition with developing heart failure: effects on left ventricu-

lar function and structure.

Circ Res

2003;

92

(2): 177–185.

95. Ahmed SH, Clark LL, Pennington WR,

et al

. Matrix metalloproteinas-

es/tissue inhibitors of metalloproteinases: relationship between changes

in proteolytic determinants of matrix composition and structural,

functional, and clinical manifestations of hypertensive heart disease.

Circulation

2006;

113

(17): 2089–2096.

96. George J, Patal S, Wexler D, Roth A, Sheps D, Keren G. Circulating

matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix

metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts

outcome in patients with congestive heart failure.

Am Heart J

2005;

150

(3): 484–487.

97. Buralli S, Dini FL, Ballo P,

et al

. Circulating matrix metalloprotein-

ase-3 and metalloproteinase-9 and tissue Doppler measures of diastolic

dysfunction to risk stratify patients with systolic heart failure.

Am J

Cardiol

2010;

105

(6): 853–856.