Background Image
Table of Contents Table of Contents
Previous Page  42 / 60 Next Page
Information
Show Menu
Previous Page 42 / 60 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 32, No 2, March/April 2021

96

AFRICA

4.

Ruderman NB, Shulman GI. Metabolic Syndrome. In:

Endocrinology:

Adult and Pediatric

. 7th edn. Elsevier; 2016: 752–769.e7.

5.

Jung U, Choi M-S. Obesity and its metabolic complications: the role of

adipokines and the relationship between obesity, inflammation, insulin

resistance, dyslipidemia and nonalcoholic fatty liver disease.

Int J Mol

Sci

2014;

15

(4): 6184–6223.

6.

Prieto D, Contreras C, Sánchez A. Endothelial dysfunction, obesity and

insulin resistance.

Curr Vasc Pharmacol

2014;

12

(3): 412–426.

7.

Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and

involvement of oxidative stress.

Aging Dis

2015;

6

(2): 109.

8.

Persson IAL, Persson K, Hägg S, Andersson RGG. Effects of green tea,

black tea and rooibos tea on angiotensin-converting enzyme and nitric

oxide in healthy volunteers.

Public Health Nutr

2010;

13

(05): 730–737.

9.

Muller CJF, Joubert E, De Beer D, Sanderson M, Malherbe CJ, Fey

SJ,

et al.

Acute assessment of an aspalathin-enriched green rooibos

(

Aspalathus linearis

) extract with hypoglycemic potential.

Phytomedicine

2012;

20

(1): 32–39.

10. Son MJ, Minakawa M, Miura Y, Yagasaki K. Aspalathin improves

hyperglycemia and glucose intolerance in obese diabetic ob/ob mice.

Eur

J Nutr

2013;

52

(6): 1607–1619.

11. Kawano A, Nakamura H, Hata S ichi, Minakawa M, Miura Y, Yagasaki

K. Hypoglycemic effect of aspalathin, a rooibos tea component from

Aspalathus linearis

, in type 2 diabetic model db/db mice.

Phytomedicine

2009;

16

(5): 437–443.

12. Mikami N, Tsujimura J, Sato A, Narasada A, Shigeta M, Kato M,

et

al

. Green rooibos extract from

Aspalathus linearis

, and its component,

aspalathin, suppress elevation of blood glucose levels in mice and inhibit

α

-amylase and

α

-glucosidase activities

in vitro

.

Food Sci Technol Res

2015;

21

(2): 231–240.

13. Baba H, Ohtsuka Y, Haruna H, Lee T, Nagata S, Maeda M,

et al

.

Studies of anti-inflammatory effects of Rooibos tea in rats.

Pediatr Int

2009;

51

(5): 700–704.

14. Van der Merwe JD, de Beer D, Joubert E, Gelderblom WCA. Short-

term and sub-chronic dietary exposure to aspalathin-enriched green

rooibos (

Aspalathus linearis

) extract affects rat liver function and anti-

oxidant status.

Molecules

2015;

20

(12): 22674–22690.

15. Gelderblom WCA, Joubert E, Gamieldien K, Sissing L, Malherbe CJ,

Maritz G. Rooibos (

Aspalathus linearis

), honeybush (

Cyclopia interme-

dia

) and cancer bush (

Sutherlandia frutescens

subsp.

microphylla

) protect

against tobacco-specific mutagenesis i

n vitro. South African J Bot

2017;

110

: 194–200.

16. Mazibuko SE, Joubert E, Johnson R, Louw J, Opoku AR, Muller CJF.

Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes

exposed to palmitate.

Mol Nutr Food Res

2015;

59

(11): 2199–2208.

17. Chen W, Sudji IR, Wang E, Joubert E, van Wyk BE, Wink M.

Ameliorative effect of aspalathin from rooibos (

Aspalathus linearis

) on

acute oxidative stress in

Caenorhabditis elegans. Phytomedicine

2013;

20

(3–4): 380–386

18. Ajuwon O, Marnewick JL, Davids LM. Rooibos (

Aspalathus linearis

)

and its major flavonoids – potential against oxidative stress-induced

conditions. In: Gowder SJT, ed.

Basic Principles and Clinical Significance

of Oxidative Stress.

InTech, 2015: 172–195.

19. Patel O, Muller C, Joubert E, Louw J, Rosenkranz B, Awortwe

C. Inhibitory interactions of

Aspalathus linearis

(rooibos) extracts

and compounds, aspalathin and Z-2-(-d-glucopyranosyloxy)-3-

phenylpropenoic acid, on cytochromes metabolizing hypoglycemic and

hypolipidemic drugs.

Molecules

2016;

21

(11): 1–13.

20. Kamakura R, Son MJ, de Beer D, Joubert E, Miura Y, Yagasaki K.

Antidiabetic effect of green rooibos (

Aspalathus linearis

) extract in

cultured cells and type 2 diabetic model KK-Ay mice.

Cytotechnology

2015;

67

(4): 699–710.

21. Huisamen B, George C, Dietrich D, Genade S. Cardioprotective and

anti-hypertensive effects of

Prosopis glandulosa

in rat models of pre-

diabetes: cardiovascular topics. C

ardiovasc J Afr

2013;

24

(2): 10–16.

22. Bradford MM. A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye

binding.

Anal Biochem

1976;

72

(1–2): 248–254.

23. Ellerby LM, Bredesen DE. Measurement of cellular oxidation, reactive

oxygen species, and antioxidant enzymes during apoptosis.

Methods

Enzymol

2000;

322

: 413–421.

24. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid

peroxidation products: Malonaldehyde and 4-hydroxynonenal.

Methods

Enzymol

1990;

186

: 407–421.

25. Sanderson M, Mazibuko SE, Joubert E, de Beer D, Johnson R, Pheiffer

C,

et al

. Effects of fermented rooibos (

Aspalathus linearis

) on adipocyte

differentiation.

Phytomedicine

2014;

21

(2): 109–117.

26. Salie R, Huisamen B, Lochner A. High carbohydrate and high fat

diets protect the heart against ischaemia/reperfusion injury.

Cardiovasc

Diabetol

2014;

13

(1): 109.

27. Marques C, Meireles M, Norberto S, Leite J, Freitas J, Pestana D,

et al

.

High-fat diet-induced obesity rat model: a comparison between Wistar

and Sprague-Dawley Rat.

Adipocyte

2016;

5

(1): 11–21.

28. Lozano I, van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M,

et al

. High-fructose and high-fat diet-induced disorders in rats: impact

on diabetes risk, hepatic and vascular complications.

Nutr Metab

(Lond)

2016;

13

(1): 15.

29. Kouidhi S, Jarboui S, Clerget Froidevaux M-S, Abid H, Demeneix B,

Zaouche A,

et al

. Relationship between subcutaneous adipose tissue

expression of leptin and obesity in Tunisian patients.

Tunis Med

2010;

88

(8): 569–572.

30. Marroquí L, Gonzalez A, N

co P, Caballero-Garrido E, Vieira E, Ripoll

C,

et al

. Role of leptin in the pancreatic

β

-cell: Effects and signaling

pathways. J

Molec Endocrinol BioScientifica

2012;

49

: R9–17.

31. Del Bas JM, Crescenti A, Arola-Arnal A, Oms-Oliu G, Arola L,

Caimari A. Grape seed procyanidin supplementation to rats fed a high-

fat diet during pregnancy and lactation increases the body fat content

and modulates the inflammatory response and the adipose tissue

metabolism of the male offspring in youth.

Int J Obes

2015;

39

(1): 7–15.

32. Milagro FI, Campión J, Martíez JA. Weight gain induced by high-fat

feeding involves increased liver oxidative stress.

Obesity

2006;

14

(7):

1118–1123.

33. Hardie DG. AMP-activated protein kinase: a master switch in glucose

and lipid metabolism.

Rev Endocr Metab Disord

2004;

5

(2): 119–25.

34. Fleming I, Schulz C, Fichtischerer B, Kemp BE, Fisslthaler, Busse R.

AMP-activated protein kinase (AMPK) regulates the insulin-induced

activation of the nitric oxide sythase in human platelets.

Thromb

Haemost

2003;

90

(5): 863–871.

35. Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall

JE. Obesity, hypertension, and chronic kidney disease.

Int J Nephrol

Renovasc Dis

2014;

7

: 75–88.

36. Lobato NS, Filgueira FP, Akamine EH, Tostes RC, Carvalho MHC,

Fortes ZB. Mechanisms of endothelial dysfunction in obesity-associated

hypertension.

Brazilian J Med Biol Res

2012;

45

(5): 392–400.

37. Hall JE, Do Carmo JM, Da Silva AA, Wang Z, Hall ME. Obesity-

induced hypertension: interaction of neurohumoral and renal mecha-

nisms.

Circ Res

2015;

116

(6): 991–1006.

38. Machleidt F, Simon P, Krapalis AF, Hallschmid M, Lehnert H, Sayk

F. Experimental hyperleptinemia acutely increases vasoconstrictory

sympathetic nerve activity in healthy humans.

J Clin Endocrinol Metab

2013;

98

(3): 491–496.