CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 2, March/April 2018
128
AFRICA
6.
Arking DE, Chakravarti A. Understanding cardiovascular disease
through the lens of genome-wide association studies.
Trends Genet
2009;
25
(9): 387–394. doi:10.1016/j.tig.2009.07.007.
7.
Liu C, Yang Q, Hwang S, Sun F, Johnson AD, Shirihai OS,
et al
.
Association of genetic variation in the mitochondrial genome with
blood pressure and metabolic traits.
Hypertension
2012;
60
: 949–956.
doi: 10.1161/hypertensionaha.112.196519.
8.
Lotta L. Genome-wide association studies in atherothrombosis.
Eur J
Intern Med
2010;
21
: 74–78. doi:10.1016/j.ejim.2009.11.003.
9.
Peden J, Farrall M. Thirty-five common variants for coronary artery
disease: the fruits of much collaborative labour.
Hum Mol Genet
2011;
20
(2): R198–R205. doi:10.1093/hmg/ddr384.
10. The CARDIoGRAMplusC4D Consortium. Large-scale association
analysis identifies new risk loci for coronary artery disease.
Nat Genet
2013;
45
(1): 25–33. doi: 10.1038/ng.2480.
11. Smith JG, Newton-Cheh C. Genome-wide association studies of late-
onset cardiovascular disease.
J Molec Cell Cardiol
2015;
83
: 131–141.
http://dx.doi.org/10.1016/j.yjmcc.2015.04.004.12. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull
DM, Howell N. Reanalysis and revision of the Cambridge reference
sequence for human mitochondrial DNA.
Nat Genet
1999;
23
: 147.
doi:10.1038/13779.
13. Marín-García J, Akhmedov A. Mitochondrial dynamics and cell death
in heart failure.
Heart Fail Rev
2016;
21
(2):123–136. doi: 10.1007/
s10741-016-9530-2.
14. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial
DNA mutations and human disease.
Biochim Biophys Acta
2010;
1797
(2): 113–128. doi: 10.1016/j.bbabio.2009.09.005.
15. de Champlain J, Wu R, Girouard H, Karas M, EL Midaoui A, Laplante
M, Wu L. Oxidative stress in hypertension.
Clin Exp Hypertens
2004;
26
(7–8): 593–601. PMID: 15702613.
16. Salim S, Asghar M, Chugh G, Taneja M, Xia Z, Saha K. Oxidative
stress: A potential recipe for anxiety hypertension and insulin resistance.
Brain Res
2010;
359
: 178–185. doi:10.1016/j.brainres.2010.08.093.
17. Queisser N, Schupp N. Aldosterone oxidative stress and NF-kB acti-
vation in hypertension-related cardiovascular and renal diseases.
Free
Radic Biol Med
2012;
53
: 314–327.
http://dx.doi.org/10.1016/j.freerad-biomed.2012.05.011.
18. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C,
Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory
response.
Mitochondrion
2013;
13
: 106–118.
http://dx.doi.org/10.1016/j.mito.2013.01.003.
19. Nakayama H, Otsu K. Translation of hemodynamic stress to ster-
ile inflammation in the heart.
Trends Endocrin Metab
2013;
24
(11):
546–553.
http://dx.doi.org/10.1016/j.tem.2013.06.004.20. Van der Walt C, Malan L, Uys AS, Malan NT. Low grade inflamma-
tion and ECG left ventricular hypertrophy in urban African males: The
SABPA study.
Heart Lung Circ
2013;
22
(11): 924–929. doi: 10.1016/j.
hlc.2013.03.075.
21. Harrison DG, Gongora MC, Guzik TJ, Widder J. Oxidative stress and
hypertension.
J Am Soc Hypertens
2007;
1
(1): 30–44. doi:10.1016/j.
jash.2006.11.006.
22. Gönenç A, Hacı
ş
evk A, Tavil Y, Çengel A, Torun M. Oxidative stress in
patients with essential hypertension: A comparison of dippers and non-
dippers.
Eur J Intern Med
2013;
24
: 139–144.
http://dx.doi.org/10.1016/j.ejim.2012.08.016.
23. Yu EP, Bennett MR. The role of mitochondrial DNA damage in
the development of atherosclerosis.
Free Radic Biol Med
2016;
100
:
223–230. doi: 10.1016/j.freeradbiomed.2016.06.011.
24. Dantas AP, Franco M, d’Silva-Antonialli MM, Tostes RC, Fortes ZB,
Nigro D,
et al
. Gender differences in superoxide generation in microves-
sels of hypertensive rats: role of NAD(P)H-oxidase.
Cardiovasc Res
2004;
61
: 22– 29. doi:10.1016/j.cardiores.2003.10.010.
25. Brière J, Chrétien D, Bénit P, Rustin P. Respiratory chain defects: what
do we know for sure about their consequences in vivo?
Biochim Biophys
Acta Bioenergetics
2004;
1659
(2): 172–177.
http://dx.doi.org/10.1016/j.bbabio.2004.07.002.
26. Reinecke F, Smeitink J, Van der Westhuizen FH. OXPHOS gene
expression and control in mitochondrial disorders.
Biochim Biophys
Acta Molec Basis Dis
2009;
1792
(12): 1113–1121. doi: 10.1016/j.
bbadis.2009.04.003.
27. NaviauxR.Metabolic features of the cell danger response.
Mitochondrion
2014;
16
: 7–7. doi: 10.1016/j.mito.2013.08.006.
28. Stiefel P, Argüelles S, García S, Jiménez L, Aparicio R, Carneado J,
et al
.
Effects of short-term supplementation with folic acid on different oxida-
tive stress parameters in patients with hypertension.
Biochim Biophys
Acta
2005;
1726
: 152–159. doi:10.1016/j.bbagen.2005.07.014.
29. Yamaguchi Y, Yamada K, Yoshikawa N, Nakamura K, Haginaka J,
Kunitomo M. Corosolic acid prevents oxidative stress inflammation and
hypertension in SHR/NDmcr-cp rats a model of metabolic syndrome.
Life Sci
2006;
79
: 2474–2479. doi:10.1016/j.lfs.2006.08.007.
30. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A.
Endogenously oxidized mitochondrial DNA induces
in vivo
and
in vitro
inflammatory responses.
J Leukoc Biol
2004;
75
: 995–1000.
31. Zhou R, Yazdi A, Menu P, Tschopp J. A role for mitochondria in
NLRP3 inflammasome activation.
Nature
2011;
469
(7329): 221–225.
doi: 10.1038/nature09663.
32. Nakahira K, Haspel J, Rathinam V, Lee S, Dolinay T, Lam H,
et al
.
Autophagy proteins regulate innate immune responses by inhibiting the
release of mitochondrial DNA mediated by the NALP3 inflammasome.
Nat Immunol
2011;
12
(3): 222–230. doi: 10.1038/ni.1980.
33. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T
et al
.
Mitochondrial DNA that escapes from autophagy causes inflamma-
tion and heart failure.
Nature
2012;
485
(7397): 251–255. doi: 10.1038/
nature10992.
34. Shimada K, Crother T, Karlin J, Dagvadorj J, Chiba N, Chen S,
et
al
. Oxidized mitochondrial DNA activates the NLRP3 inflamma-
some during apoptosis.
Immunity
2012;
36
(3): 401–414. doi: 10.1016/j.
immuni.2012.01.009.
35. West A, Khoury-Hanold W, Staron M, Tal M, Pineda C, Lang S,
et al
.
Key messages
•
Cardiovascular disease (CVD) is a leading global cause
of morbidity and mortality, and its incidence is on the
rise in sub-Saharan Africa.
•
Discrepancies in the onset and progression of CVDs
exist between different ethnic and population groups,
which nuclear genetic studies have so far failed to
explain. Mitochondrial DNA (mtDNA) offers a viable
alternative target for genetic studies concerning common
complex disease.
•
Many approaches can be taken to investigate the role of
mtDNA in disease, but not all are suited for studies influ-
enced by moderate cohort size or population stratifica-
tion. The adjusted mutational load hypothesis offers an
alternative approach, which could be of particular value
for much-needed studies on CVDs in under-represented
sub-Saharan African populations.