Background Image
Table of Contents Table of Contents
Previous Page  66 / 84 Next Page
Information
Show Menu
Previous Page 66 / 84 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 2, March/April 2018

128

AFRICA

6.

Arking DE, Chakravarti A. Understanding cardiovascular disease

through the lens of genome-wide association studies.

Trends Genet

2009;

25

(9): 387–394. doi:10.1016/j.tig.2009.07.007.

7.

Liu C, Yang Q, Hwang S, Sun F, Johnson AD, Shirihai OS,

et al

.

Association of genetic variation in the mitochondrial genome with

blood pressure and metabolic traits.

Hypertension

2012;

60

: 949–956.

doi: 10.1161/hypertensionaha.112.196519.

8.

Lotta L. Genome-wide association studies in atherothrombosis.

Eur J

Intern Med

2010;

21

: 74–78. doi:10.1016/j.ejim.2009.11.003.

9.

Peden J, Farrall M. Thirty-five common variants for coronary artery

disease: the fruits of much collaborative labour.

Hum Mol Genet

2011;

20

(2): R198–R205. doi:10.1093/hmg/ddr384.

10. The CARDIoGRAMplusC4D Consortium. Large-scale association

analysis identifies new risk loci for coronary artery disease.

Nat Genet

2013;

45

(1): 25–33. doi: 10.1038/ng.2480.

11. Smith JG, Newton-Cheh C. Genome-wide association studies of late-

onset cardiovascular disease.

J Molec Cell Cardiol

2015;

83

: 131–141.

http://dx.doi.org/10.1016/j.yjmcc.2015.04.004.

12. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull

DM, Howell N. Reanalysis and revision of the Cambridge reference

sequence for human mitochondrial DNA.

Nat Genet

1999;

23

: 147.

doi:10.1038/13779.

13. Marín-García J, Akhmedov A. Mitochondrial dynamics and cell death

in heart failure.

Heart Fail Rev

2016;

21

(2):123–136. doi: 10.1007/

s10741-016-9530-2.

14. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial

DNA mutations and human disease.

Biochim Biophys Acta

2010;

1797

(2): 113–128. doi: 10.1016/j.bbabio.2009.09.005.

15. de Champlain J, Wu R, Girouard H, Karas M, EL Midaoui A, Laplante

M, Wu L. Oxidative stress in hypertension.

Clin Exp Hypertens

2004;

26

(7–8): 593–601. PMID: 15702613.

16. Salim S, Asghar M, Chugh G, Taneja M, Xia Z, Saha K. Oxidative

stress: A potential recipe for anxiety hypertension and insulin resistance.

Brain Res

2010;

359

: 178–185. doi:10.1016/j.brainres.2010.08.093.

17. Queisser N, Schupp N. Aldosterone oxidative stress and NF-kB acti-

vation in hypertension-related cardiovascular and renal diseases.

Free

Radic Biol Med

2012;

53

: 314–327.

http://dx.doi.org/10.1016/j.freerad-

biomed.2012.05.011.

18. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C,

Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory

response.

Mitochondrion

2013;

13

: 106–118.

http://dx.doi.org/10.1016/j.

mito.2013.01.003.

19. Nakayama H, Otsu K. Translation of hemodynamic stress to ster-

ile inflammation in the heart.

Trends Endocrin Metab

2013;

24

(11):

546–553.

http://dx.doi.org/10.1016/j.tem.2013.06.004.

20. Van der Walt C, Malan L, Uys AS, Malan NT. Low grade inflamma-

tion and ECG left ventricular hypertrophy in urban African males: The

SABPA study.

Heart Lung Circ

2013;

22

(11): 924–929. doi: 10.1016/j.

hlc.2013.03.075.

21. Harrison DG, Gongora MC, Guzik TJ, Widder J. Oxidative stress and

hypertension.

J Am Soc Hypertens

2007;

1

(1): 30–44. doi:10.1016/j.

jash.2006.11.006.

22. Gönenç A, Hacı

ş

evk A, Tavil Y, Çengel A, Torun M. Oxidative stress in

patients with essential hypertension: A comparison of dippers and non-

dippers.

Eur J Intern Med

2013;

24

: 139–144.

http://dx.doi.org/10.1016/j.

ejim.2012.08.016.

23. Yu EP, Bennett MR. The role of mitochondrial DNA damage in

the development of atherosclerosis.

Free Radic Biol Med

2016;

100

:

223–230. doi: 10.1016/j.freeradbiomed.2016.06.011.

24. Dantas AP, Franco M, d’Silva-Antonialli MM, Tostes RC, Fortes ZB,

Nigro D,

et al

. Gender differences in superoxide generation in microves-

sels of hypertensive rats: role of NAD(P)H-oxidase.

Cardiovasc Res

2004;

61

: 22– 29. doi:10.1016/j.cardiores.2003.10.010.

25. Brière J, Chrétien D, Bénit P, Rustin P. Respiratory chain defects: what

do we know for sure about their consequences in vivo?

Biochim Biophys

Acta Bioenergetics

2004;

1659

(2): 172–177.

http://dx.doi.org/10.1016/j.

bbabio.2004.07.002.

26. Reinecke F, Smeitink J, Van der Westhuizen FH. OXPHOS gene

expression and control in mitochondrial disorders.

Biochim Biophys

Acta Molec Basis Dis

2009;

1792

(12): 1113–1121. doi: 10.1016/j.

bbadis.2009.04.003.

27. NaviauxR.Metabolic features of the cell danger response.

Mitochondrion

2014;

16

: 7–7. doi: 10.1016/j.mito.2013.08.006.

28. Stiefel P, Argüelles S, García S, Jiménez L, Aparicio R, Carneado J,

et al

.

Effects of short-term supplementation with folic acid on different oxida-

tive stress parameters in patients with hypertension.

Biochim Biophys

Acta

2005;

1726

: 152–159. doi:10.1016/j.bbagen.2005.07.014.

29. Yamaguchi Y, Yamada K, Yoshikawa N, Nakamura K, Haginaka J,

Kunitomo M. Corosolic acid prevents oxidative stress inflammation and

hypertension in SHR/NDmcr-cp rats a model of metabolic syndrome.

Life Sci

2006;

79

: 2474–2479. doi:10.1016/j.lfs.2006.08.007.

30. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A.

Endogenously oxidized mitochondrial DNA induces

in vivo

and

in vitro

inflammatory responses.

J Leukoc Biol

2004;

75

: 995–1000.

31. Zhou R, Yazdi A, Menu P, Tschopp J. A role for mitochondria in

NLRP3 inflammasome activation.

Nature

2011;

469

(7329): 221–225.

doi: 10.1038/nature09663.

32. Nakahira K, Haspel J, Rathinam V, Lee S, Dolinay T, Lam H,

et al

.

Autophagy proteins regulate innate immune responses by inhibiting the

release of mitochondrial DNA mediated by the NALP3 inflammasome.

Nat Immunol

2011;

12

(3): 222–230. doi: 10.1038/ni.1980.

33. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T

et al

.

Mitochondrial DNA that escapes from autophagy causes inflamma-

tion and heart failure.

Nature

2012;

485

(7397): 251–255. doi: 10.1038/

nature10992.

34. Shimada K, Crother T, Karlin J, Dagvadorj J, Chiba N, Chen S,

et

al

. Oxidized mitochondrial DNA activates the NLRP3 inflamma-

some during apoptosis.

Immunity

2012;

36

(3): 401–414. doi: 10.1016/j.

immuni.2012.01.009.

35. West A, Khoury-Hanold W, Staron M, Tal M, Pineda C, Lang S,

et al

.

Key messages

Cardiovascular disease (CVD) is a leading global cause

of morbidity and mortality, and its incidence is on the

rise in sub-Saharan Africa.

Discrepancies in the onset and progression of CVDs

exist between different ethnic and population groups,

which nuclear genetic studies have so far failed to

explain. Mitochondrial DNA (mtDNA) offers a viable

alternative target for genetic studies concerning common

complex disease.

Many approaches can be taken to investigate the role of

mtDNA in disease, but not all are suited for studies influ-

enced by moderate cohort size or population stratifica-

tion. The adjusted mutational load hypothesis offers an

alternative approach, which could be of particular value

for much-needed studies on CVDs in under-represented

sub-Saharan African populations.