Background Image
Table of Contents Table of Contents
Previous Page  67 / 84 Next Page
Information
Show Menu
Previous Page 67 / 84 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 29, No 2, March/April 2018

AFRICA

129

Mitochondrial DNA stress primes the antiviral innate immune response.

Nature

2015;

520

(7548): 553–537. doi:10.1038/nature14156.

36. Yu E, Calvert P, Mercer J, Harrison J, Baker L, Figg N,

et al

.

Mitochondrial DNA damage can promote atherosclerosis indepen-

dently of reactive oxygen species through effects on smooth muscle

cells and monocytes and correlates with higher-risk plaques in humans.

Circulation

2013;

128

: 702–712. doi: 10.1161/circulationaha.113.002271.

37. Mercer JR. Mitochondrial bioenergetics and therapeutic intervention in

cardiovascular disease.

Pharmacol Therapeut

2014;

141

(1):13–20. http://

dx.doi.org/10.1016/j.pharmthera.2013.07.011.

38. Yu EP, Bennett MR. Mitochondrial DNA damage and atheroscle-

rosis.

Trends Endocrin Metab

2014;

25

(9): 481–487.

http://dx.doi

.

org/10.1016/j.tem.2014.06.008.

39. Lightowlers RN, Taylor RW, Turnbull DM. Mutations causing mito-

chondrial disease: What is new and what challenges remain?

Science

2015;

349

(6255): 1494–1499. doi: 10.1126/science.aac7516.

40. DiMauro S, Schon E. Mitochondrial DNA mutations in human disease.

Am J Med Genet

2001;

106

:18–26. doi: 10.1002/ajmg.1392.

41. McFarland R, Elson JL, Taylor RW, Howell N, Turnbull DM. Assigning

pathogenicity to mitochondrial tRNA mutations: when ‘definitely

maybe’ is not good enough.

Trends Genet

2004;

20

: 591–596. doi:

10.1016/j.tig.2004.09.014.

42. Montoya J, López-Gallardo E, Díez-Sánchez C, López-Pérez MJ,

Ruiz-Pesini E. 20 years of human mtDNA pathologic point mutations:

Carefully reading the pathogenicity criteria.

Biochim Biophys Acta

2009;

1787

: 476–483. doi:10.1016/j.bbabio.2008.09.003.

43. Yarham JW, Al-Dosary M, Blakely EL, Alston CL, Taylor RW, Elson

JL,

et al

. A comparative analysis approach to determining the patho-

genicity of mitochondrial tRNA mutations.

Hum Mutat

2011;

32

(11):

1319–1325. doi: 10.1002/humu.21575.

44. Mitchell AL, Elson JL, Howell N, Taylor RW, Turnbull DM. Sequence

variation in mitochondrial complex I genes: mutation or polymorphism?

J Med Genet

2006;

43

: 175–179. doi: 10.1136/jmg.2005.032474.

45. Rossignol R, Faustin B, Rocher C, Malgat M, Mazat J, Letellier T.

Mitochondrial threshold effects.

Biochem J

2003;

370

(Pt 3): 751–762.

doi: 10.1042/bj20021594.

46. Faustin B, Rossignol R, Rocher C, Bénard G, Malgat M, Letellier T.

Mobilization of adenine nucleotide translocators as molecular bases of

the biochemical threshold effect observed in mitochondrial diseases.

J

Biol Chem

2004;

279

(19): 20411–20421. doi 10.1074/jbc.m314259200.

47. Picard M, Hirano M. Disentangling (epi)genetic and environmental

contributions to the mitochondrial 3243A

>

G mutation phenotype:

Phenotypic destiny in mitochondrial disease?

J Am Med Assoc Neurol

2016;

73

(8): 923–925. doi: 10.1001/jamaneurol.2016.1676.

48. Kirches E. LHON: Mitochondrial mutations and more.

Curr Genomics

2011;

12

: 44–54. doi: 10.2174/138920211794520150.

49. Kirkman M, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis

K, De Coo I,

et al

. Gene–environment interactions in Leber hereditary

optic neuropathy.

Brain

2009;

132

(Pt 9): 2317–2326. doi: 10.1093/brain/

awp158.

50. Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A,

et

al

. Clinical expression of Leber hereditary optic neuropathy is affected

by the mitochondrial DNA-haplogroup background.

Am J Hum Genet

2007;

81

(2): 228–233.

http://dx.doi.org/10.1086/519394.

51. Ji Y, Zhang A, Jia X, Zhang Y, Xiao X, Li S,

et al

. Mitochondrial DNA

haplogroups M7b1’2 and M8a affect clinical expression of Leber heredi-

tary optic neuropathy in Chinese families with m.11778G

>

A mutation.

Am J Hum Genet

2008;

83

(6): 760–768. doi: 10.1016/j.ajhg.2008.11.002.

52. Ong S-B, Kalkhoran S, Cabrera-Fuentes H, HausenloyD.Mitochondrial

fusion and fission proteins as novel therapeutic targets for treating cardi-

ovascular disease.

Eur J Pharmacol

2015;

763

:104–114.

http://dx.doi

.

org/10.1016/j.ejphar.2015.04.056.

53. Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial

disorders.

Int J Cardiol

2014;

177

: 754–763.

http://dx.doi.org/10.1016/j.

ijcard.2014.11.014.

54. Yaplito-Lee J, Weintraub R, Jamsen K, Chow C, Thorburn D, Boneh A.

Cardiac manifestations in oxidative phosphorylation disorders of child-

hood.

J Pediatr

2007;

150

(4): 407–411. doi:

http://dx.doi.org/10.1016/j.

jpeds.2006.12.047.

55. Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial

diseases and the heart: an overview of molecular basis, diagnosis, treat-

ment and clinical course.

Future Cardiol

2012;

8

(1):71–88. doi: 10.2217/

fca.11.79.

56. Villar P, Bretón B, García-Pavía P, González-Páramos C, Blázquez A,

Gómez-Bueno M,

et al

. Cardiac dysfunction in mitochondrial disease.

Circ J

2013;

77

(11): 2799–2806. doi: 10.1253

/circj.CJ

-13-0557.

57. Yajima N, Yazaki Y, Yoshida K, Sano K, Takahashi W, Sasaki Y,

et

al

. A case of mitochondrial cardiomyopathy with pericardial effusion

evaluated by 99mTc-MIBI myocardial scintigraphy.

J Nucl Cardiol

2009;

16

(6): 989–994. doi:10.1007/s12350-009-9149-y.

58. Malfatti E, Laforêt P, Jardel C, Stojkovic T, Behin A, Eymard B,

et al

.

High risk of severe cardiac adverse events in patients with mitochondrial

m. 3243A

>

G mutation.

Neurology

2013;

80

(1): 100–105. doi: http:/​/​dx.​

doi.​org/​10.​1212/​WNL.​0b013e31827b1a2f .

59. Finsterer J, Stöllberger C, Kopsa W. Noncompaction on cardiac MRI in

a patient with nail-patella syndrome and mitochondriopathy.

Cardiology

2003;

100

(1): 48–49. doi:10.1159/000072393.

60. Inamori M, Ishigami T, Takahashi N, Hibi K, Ashino K, Sumita S,

et al

. A case of mitochondrial cardiomyopathy with heart failure, sick

sinus syndrome and diabetes mellitus: mitochondrial DNA adenine-to-

guanine transition at 3243 of mitochondrial tRNA (LEU)(UUR) gene.

J Cardiol

1997;

30

(6): 341–347. PMID: 9436076.

61. Majamaa-Voltti K, Peuhkurinen K, Kortelainen ML, Hassinen IE,

Majamaa K. Cardiac abnormalities in patients with mitochondrial

DNA mutation 3243A

>

G.

BMC Cardiovasc Disord

2002;

2

(1): 1. doi:

10.1186/1471-2261-2-12.

62. Hollingsworth KG, Gorman GS, Trenell MI, McFarland R, Taylor RW,

Turnbull DM,

et al

. Cardiomyopathy is common in patients with the

mitochondrial DNA m. 3243A

>

G mutation and correlates with muta-

tion load.

Neuromusc Disord

2012;

22

(7): 592–596. doi:

http://dx.doi

.

org/10.1016/j.nmd.2012.03.001.

63. Mima A, Shiota F, Matsubara T, Iehara N, Akagi T, Abe H,

et al

. An

autopsy case of mitochondrial myopathy, encephalopathy, lactic acido-

sis, and stroke-like episodes (MELAS) with intestinal bleeding in chronic

renal failure.

Renal Fail

2011;

33

(6): 622–625.

http://dx.doi.org/10.3109/

0886022X.2011.585730.

64. Vydt TC, de Coo RF, Soliman OI, Folkert J, van Geuns RJ, Vletter

WB,

et al

. Cardiac involvement in adults with m. 3243A

>

G MELAS

gene mutation.

Am J Cardiol

2007;

99

(2): 264–269.

http://dx.doi

.

org/10.1016/j.amjcard.2006.07.089.

65. Hung PC, Wang HS, Chung HT, Hwang MS, Ro LS. Pulmonary

hypertension in a child with mitochondrial A3243G point mutation.

Brain Develop

2012;

34

(10): 866–868.

http://dx.doi.org/10.1016/j.brain-

dev.2012.02.011.

66. Liu CH, Chang CH, Kuo HC, Ro LS, Liou CW, Wei YH,

et al

.

Prognosis of symptomatic patients with the A3243G mutation of mito-

chondrial DNA.

J Formosan Med Assoc

2012;

111

(9): 489–494. http://

dx.doi.org/10.1016/j.jfma.2011.06.014.

67. Sproule DM, Dyme J, Coku J, de Vinck D, Rosenzweig E, Chung WK,

et al

. Pulmonary artery hypertension in a child with MELAS due to